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Abstract

High throughput streaming applications operate in an environment where continuous

processing of information takes place. An important class of such applications are

embedded systems for digital signal processing, DSP , in which the algorithms of the

system are applied to streams of signals. The variety of these applications is large

and encompasses algorithms for filtering audio and video signals, algorithms for error

correction, compression, picture in picture etc. Modern multimedia systems could not

exist without those kind of embedded systems. The algorithms are all characterized

by a repeated application of some functions on a stream of input values, eventually

resulting in a stream of output values. In order to process the stream samples and

provide the desired quality, many functions are performed on the consecutive stream

samples.

To maintain the stream throughput and provide outputs that are synchronized with

the input signals, the applications require sufficient processing power. Sufficient

means that the processing power available within an application should be enough

to handle the computational load generated by the stream data. This requirement

poses a challenge to system or application designers. System designer have to predict

the required load in order to optimize their design for the application needs.

If the algorithms of a high-throughput application are manifest and hence the required

load to perform the function is predictable and independent of the stream data, the

task is straitforward and usually involves static scheduling of the processing elements.

Unfortunately not all algorithms are manifest. Non-manifest algorithms that are

data dependent and produce a variable computational load, do exist. So far, the data

dependency was neglected and implementations were based on static scheduling for
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the worst case.

In this thesis we show the feasibility of Coarse Grained Data Flow Machines for

high-throughput streaming non-manifest applications. The architecture of the Coarse

Grained Data Flow Machine is derived from the classical data flow architecture and

the scheduling of its processing elements is done dynamically in hardware.

Since the implementation of such an architecture is strongly application dependent,

a design flow and supporting software tools, are provided. This gives application

designers the means by which the number of processing elements, buffer sizes and

latencies of the architecture can be tuned.



Acknowledgements

I am grateful to many people for their support during my Ph.D. First of all, I would

like to thank my promoter Thijs Krol for giving me the opportunity to do my Ph.D. at

his chair (CADTES) and for his enormous help, support, sharp criticism and quality

assurance that made this thesis reach this level of maturity. I also want to thank

Gerard Smit for his advice both technically and strategically and for the various

versions of my thesis that he had read and corrected. I want to show my gratitude to

Bert Molenkamp for the help and support on the VHDL experiments we made and to
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Chapter 1

Introduction

1.1 Introduction

Important classes of embedded systems are systems for digital signal processing, DSP ,

in which algorithms are applied to streams of signals. The variety of these applications

is large and encompasses algorithms for filtering audio and video signals, algorithms

for error correction, compression, picture in picture etc. Modern multimedia systems

could not exist without those kind of embedded systems. The algorithms are all char-

acterized by a repeated application of some functions on a stream of input values,

eventually resulting in a stream of output values. Important parameters from the

application domain which, strongly influence the synthesis method, are throughput

and synchronicity.

In this thesis we focus on high-throughput applications. With high-throughput, the

stream of signals arrive at a high speed and the inter arrival time of individual signals

or packet of signals is shorter than the processing time of an individual signal or packet

of signals. Real-time constraints play a crucial role in the design of high-throughput

DSP applications. The available hardware must be able to perform the specified

function at any time and with a sufficient small latency. By small we mean in the order

of 100 time steps. In case the input is provided as a synchronous stream of equally sized

blocks and the latency of the algorithm is not a data dependent, current synthesis tools
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for high-throughput applications are available which give (near) optimal schedules.

The algorithms within those synthesis tools [4] tend to find a near optimal static

schedule using integer linear programming. Unfortunately, if the input streams are

not fully synchronous or the algorithms of the high-throughput application have a

data dependent execution latency, there are no optimal synthesis tools available.

Scheduling and resource allocation in that case rely on heuristic algorithms. A second

problem for those kind of synthesis tools is that they are only suitable for parts of a

design and hence they have to cooperate with other tools to provide a total solution.

In this research we aim at diminishing those disadvantages, providing design solutions

for algorithms with data dependent latencies and handle irregular input data streams,

without loosing the advantage of being able to determine optimal schedules.

1.1.1 Throughput

We distinguish between synthesis methods for high- medium- and low-throughput.

This distinction is related to the internal speed (i.e. clock speed) that can be obtained

with the available technology in relation to the arrival rate of the input sample.

Consider the internal clock delay of the processor to be ∆p and the inter-arrival time

of the input samples to be ∆t. In case 1
∆p

< 100× 1
∆t

hence ∆t

∆p
< 100, we talk about

high-throughput. In case this ratio is 100 to 1000 we talk about medium-throughput

and if this ratio is more than 1000 about low-throughput. Because in medium and

low-throughput applications the possibility to re-use the functionality provided by

the hardware is very high, the implementation in general will lead to one or more

von Neumann like processors with a targeted arithmetic and logical unit. So, some

program and program store can be distinguished.

In high-throughput applications the re-use of hardware is small. Therefore the imple-

mentation in general consists of a number of dedicated processing elements intercon-

nected by a dedicated data path in which the data flow is controlled by a dedicated

controller [5].

Typical high-throughput applications are algorithms for video signal processing, typ-

ical medium-throughput applications are algorithms for audio signal processing and
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a typical low-throughput application is remote control.

From the preceding it becomes clear that synthesis methods for high-throughput ap-

plications are quite different from synthesis methods for medium and low-throughput

applications.

This research proposal aims at the improvement and extension of the applicability of

synthesis tools for high-throughput applications.

1.1.2 Synchronicity

Real time constraints play a crucial role in the design of DSP applications. The

available hardware must be able to perform the specified function at any time and

with a sufficient small latency, for any combination of input streams.

In case the control flow of the algorithm is not data dependent and the input is

provided as a synchronous stream of equally sized blocks, the influence of the real-time

constraints on the design can be easily determined. In that case, for high-throughput

applications, it is possible to calculate optimal schedules by means of integer linear

programming [8],[9].

However, in case the inter-arrival time of input samples is irregular and the pro-

gram flow is data dependent or even an interrupt mechanism needs to be provided,

it becomes very difficult to determine the worst case real-time properties and conse-

quently scheduling and resource allocation become difficult. Scheduling and resource

allocation in that case rely on heuristic algorithms.

Only proprietary tools are available for high-level design of high-throughput digital

signal processing applications [5][4]. The viability and the efficiency of these design

tools have been proven by the design of a number of very large and innovative VLSI

designs [6],[7]. However, these tools can only be applied when the input is provided as

a synchronous stream of equally sized blocks and they do not allow a data dependent

control flow. Unfortunately, many specifications do not satisfy these constraints.

Moreover, in most cases, only a part or parts of a chip design fall into the category

of high-throughput applications.

In this thesis we aim at diminishing these disadvantages without losing the advantage
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of being able to determine optimal schedules.

1.1.3 The design process for high-throughput DSP applica-

tions

The design flow for high-throughput DSP applications in most cases starts from an

algorithmic specification, often given in C. Such a specification in C is the result of

the design activities of the system designer, who uses a simulation environment in C

in order to validate the algorithm.

As has been explained before, high-throughput applications tend to an architecture

built from dedicated processing elements, a dedicated data path and hardware re-use

implemented by a dedicated controller which controls the data flow.

The first step in the design process is to identify the functions in the algorithm

which are most suitable for implementation as processing elements. This is a creative

process, performed manually by the designer. These processing elements are normally

described in VHDL, which allows further refinement of the design of the processing

elements by means of commercially available tools.

Given the processing elements and the algorithm in C, the behavior expressed by the

algorithm is expressed using an application graph. In the Phideo tool set developed by

Philips research [5] the application graph was written by means of a signal flow graph

language called PIF . The functions in the PIF description correspond to the functions

performed by the processing elements. The entire translation from the algorithm in

C to a set of processing elements each described in VHDL and a description in the

signal flow graph language PIF is a creative process which is performed manually

and therefore very error prone. Once the description of the processing elements and

the description of the algorithm in PIF are ready, effective tools for scheduling and

resource allocation are available. These tools are dedicated to the high-throughput

DSP application domain and are able to determine optimal schedules by means of

integer linear programming.

Furthermore, a tool exists which is able to create the required controller from the

schedule. Starting from the controller and the processing elements, the final chip is
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developed by means of commercially available tools.

The viability and the efficiency of this design flow have been proven by the design of

a number of very large and innovative VLSI designs [10].

1.2 Problem Formulation

Unfortunately, the algorithms for scheduling and resource allocation that are based

on integer linear programming put severe restrictions on the kind of algorithms which

can be treated in the design process sketched above.

All repetitions in the algorithm should be of a fixed number. Consequently the input

streams must be fully synchronous and must consist of fixed length blocks.

Clearly the algorithms may not contain conditions. So data dependent loops or algo-

rithms that are data dependent and produce a variable computational load, cannot

be treated. The latter type of algorithms are called non-manifest.

Moreover, it is difficult to embed the design results into medium and low-throughput

designs and to interact with these designs. In some cases it is possible to work

around these restrictions, but in many cases this is not possible for two reasons.

Firstly because the optimal schedule depends on the number of repetitions of the

different loops in the algorithm and secondly because the signal flow graph model is

too restricted to describe irregular data streams.

1.3 Proposed Solution

In this thesis we show the feasibility of Coarse Grained Data Flow Machines for high-

throughput streaming non-manifest applications.

In this proposed architecture, the High2 DFM which is derived from the classical

data flow architecture, the scheduling is done dynamically in hardware. Since the

implementation of such an architecture is strongly application dependent, we provide

a design flow and supporting software by means of which the processing elements,

buffer sizes and latencies can be tuned.
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Applications of the High2 DFM are modeled by an application graph where the nodes

of the application graph represent the algorithms or functions of the application and

the edges of the application graph represent the data or operand dependencies between

the nodes.

To avoid the problems of the classical data flow machines, operations of the High2

DFM are coarse grained by design. In this way the computation to communication

ratio and the architectural overhead is acceptable. The DFM contains multiple exe-

cution units and each execution unit may contain more than one processing element.

All the processing elements that belong to an execution unit perform the same opera-

tion. This allows the DFM to handle an input stream, that does not necessarily have

to be synchronous nor do the block lengths of the input samples have to be regular.

1.4 Thesis Outline

Chapter 1: Introduction.

Chapter 2: In this chapter the models and definitions used within this thesis are

given. The chapter handles models and definitions related to the environment in

which a high-throughput streaming application has to operate and the architecture

of the proposed processor.

Chapter 3: In this chapter a description of non-manifest algorithms is provided.

There are a number of reasons that cause an algorithm to be non-manifest. The

algorithm can have a loop which is data dependent, hence the input data determines

the number of loop iterations or it can have data dependent control hence there

could be more than one execution path, each with its own latency. A number non-

manifest algorithm examples are given, each describing a separate problem. Some

algorithms are characterized by having variable iterations of a loop body depending

on the operands provided others are characterized by having data dependent control.

In order to generalize the model of non-manifest algorithms, we choose to use the

number of consumed clock cycles as a measure of the algorithm latency. The number
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of consumed clock cycles will vary based on the implementation technology. Hence,

designers of the proposed processing elements should profile the non-manifest algo-

rithms on the actual processing element implementations. In the design process of

application specific processors, knowledge of the application and its environment is

used to design the processor. Important design parameters are, the maximum work-

load of a single computation and the throughput of the input stream. The stream

throughput is a specification requirement and the maximum workload is obtained by

profiling the algorithm using realistic data streams.

Chapter 4: In this chapter various dynamic scheduling architectures from litera-

ture are explored. A comparison is made between static scheduling and dynamic

scheduling techniques. The chapter covers concepts such as the Tomasulo schedul-

ing algorithm, the Scoreboarding algorithm, data flow machines, and pipelining. The

Tomasulo and Scoreboard scheduling algorithms schedule fine grained instructions dy-

namically in hardware. The classical dataflow architecture, also handles fine grained

instructions, and thus suffered from architectural overhead problems. Despite those

problems the classical dataflow machines had, the dataflow model of execution has

attractive properties for high-throughput streaming applications and hence is a mo-

tivation for the High2 dataflow architecture discussed in chapter 5. Those problems

were circumvented by adapting the model of fine grain data flow processing to coarse

grain processing.

Chapter 5: In this chapter we explore processor design solutions for applications

with non-manifest algorithms. Two kinds of application models are classified. Those

models are called the simple model and complex model. In the simple model the ap-

plication consists of one non-manifest algorithm that has to operate in a streaming

environment. The stream samples are independent (each computation depends only

on one operand) and form the operands of the application. They arrive with an inter-

val that is much shorter than the execution time of a single operand. Clearly having

one processor is not enough to handle this stream load. An architectural solution

of a dedicated processor for the simple model is proposed. This dedicated processor
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contains many processing elements. Each processing element implements the exact

same functionality and the operands of the stream are dynamically scheduled on

them. Since the execution time is variable and is based on the actual data content of

the operand, the results of the processing elements can over take each other in time.

This property is called out-of-order execution. The proposed processor makes use of

this property and the property of having many processing elements to cope with the

high-throughput stream requirements.

Chapter 6: Chapter 6 describes the design method and tools used for developing

applications using the High2 DFM as a target architecture. Using this design method

the required system parameters, such as number of processors, memory sizes and sys-

tem latencies are derived. The chapter describes the design methodology by means

of an example. It turns out that the number of processors required can be scaled,

and the system can be tuned to the required input processing load. It also turned

out that variations in the input throughput, while the load is constant, do not influ-

ence the performance of the High2 DFM while the same variations for a statically

scheduled architecture may lead to non-optimal scheduling solutions, and worst case

requirements for the number of required processing elements.

Chapter 7: Conclusions.

8



Chapter 2

Models and Definitions

In this chapter we provide the models and definitions needed to describe

the material of this thesis.

2.1 Introduction

A high-throughput streaming application usually operates in an environment where

continues processing of information takes place and lots of operations, between consec-

utive input stream samples or data elements, have to be performed. The application

usually performs a set of algorithmic functions or operations on a continues stream

of input data. It is those set of algorithmic functions, their appropriate interaction

and the underlying environment in which they have to operate, that form the char-

acteristics and the limitations of the application.

In order to achieve best results from such applications we need to build hardware

architectures which are best suited for such applications, taking into account the

environmental aspects in which they have to operate, characteristics and limitations

of those class of applications. This is done by analyzing, defining and modeling each

aspect separately.

In the rest of this chapter we proceed by analyzing the following subtopics separately:

• Environment
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• Application

• Hardware architecture

2.2 Environment

The environment in which an application is to operate has a major influence on

the choices designers have to take. We consider only streaming applications, as this

thesis is focused on researching such applications and architectures targeted for such

applications. In a streaming environment, the life cycle of the application can be seen

as consuming and processing input data-samples, and producing output samples.

One restriction that is imposed on high-throughput streaming applications, is that

the implementation of the application has to be able to process the input stream

within a bounded time interval, also known as the latency of the application. The

term high-throughput in this thesis refers to the fact that such applications have to

keep up with the high-throughput of the input stream and in order to do so the

system must have sufficient processing power. Sufficient means that the processing

power available in the system is more than the processing load provided by the input

stream. One way to achieve the high-throughput and latency requirements, is by

a highly parallel multiple instantiations of the algorithms of the application. This

means that standard processor architectures, which are based on the Von Neumann

topologies are not suited here for, as they are not capable of performing multiple

parallel operations.

The data stream arrives at the inputs, of the application, with either a fixed time

interval or variable time interval. If the data elements arrive with a fixed input time

interval we say that the system operates in a constant input-stream environment.

Finite Impulse Response (FIR) [44][45] filters are a typical example of a constant

stream application, the data samples from the analog to digital (A/D) converters

arrive at the filter with a constant sampling rate. On the other hand if the data

elements arrive at variable time intervals, we say that the system operates in a variable

input-stream environment.
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input stream output stream naming convention

constant constant constant stream-environment
constant variable constant input variable out stream-environment
variable constant variable input constant output stream-environment
variable variable variable stream environment

Table 2.1: Different types of streaming environments

A wireless communication medium can be considered an example of a variable stream

environment as the data packets or samples can be lost, due to the influences of noise

or the medium in which the mobile is operating, or even due to transmission range

constraints, and hence delivery is not guaranteed. Playing an MPEG movie from the

hard disk of a personal computer could also be considered as a variable input-stream

environment, since the input data rate is scene dependent and delivery of the data

samples can be hindered by interrupts or other processes which are running on the

personal computer.

There are also variations of variable or constant input-streams and variable or con-

stant output-streams. Table 2.1 gives a summary of the different stream-variations

and their naming conventions. We shortly summarize the characteristics and proper-

ties of the environment that influence the design as follows:

• The way in which the data stream is delivered to the inputs of the application

(constant stream / variable stream)

• The way in which the data has to be produced at the outputs of the application

(constant stream / variable stream)

• The data granularity (bits, bytes, words, or larger blocks)

• The input and output throughput requirements of the data stream

• The maximum latency between input / output

Stream throughput is the speed of arrival or delivery of the data samples (which are

the operands of the functions) and is normally the reciprocal of the average sample

interval time. Data values or instruction operands are carried by tokens. In case
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of a constant stream the throughput can be expressed as the sample frequency, i.e.

the number of samples per second which is δ−1 if δ is the time that elapses between

two successive samples (the operandinterval). Figure 2.1 gives a simplified model

of the environment where streaming applications have to operate, in this figure the

environment is a constant stream environment. The input tokens arrive at regular

time intervals with a constant time delay between them and the output tokens are

also produced with a constant time delay. Note: the output inter-token delay does

not have to be the same as the input token interval.

Figure 2.1: Application within a constant stream environment

In figure 2.2 we see the same application but within a variable streaming environment.

The input tokens arrive at random or variable time intervals, and hence the inter-

token delay is also variable.

Figure 2.2: Application within a variable stream environment

In order to formalize the concepts just mentioned we give the following definitions:

The stream is in the form of data elements which can range from a few number of

bytes to blocks of mega bytes. Data elements which belong to a single computational

instance are called tokens and are denoted by p. There is an ordering relationship

between the tokens of a stream. This ordering relationship dictates that each token

of the stream must have a successor and a predecessor.
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Tokens are modeled by the set of integers I, each token i, i ∈ I has a time stamp

time(i), time(i) ∈ R and a value val(i), val(i) ∈ V, in which V is some set of values.

Hence time ∈ (I → R) and val ∈ (I → V) where time is a monotonic increasing

function, i.e. i < j ↔ time(i) < time(j).

Definition 1 (stream). An unbounded and ordered set of tokens, where no two

tokens can exist at the same time is called a stream and is denoted by S. Hence

S = −∞· · · pi−1, pi, pi+1 · · ·∞,

Note: In practice the value of the tokens range from small sizes such as samples

produced from a high speed A/D converter to large blocks of data depending on the

producing instrument or device.

Definition 2 (streaming environment). The environment in which an application

operates is called a streaming environment, if the tokens the application operates on,

arrive as a data stream and/or the application produces its output data as a stream.

Definition 3 (token interval). The token interval δ(i) is the time interval between

two consecutive tokens Pi, Pj and hence δ(i) ≡ time(i + 1) − time(i). Because time

is a monotonic increasing function, δ(i) > 0 for all i, i ∈ I.

Definition 4 (variable streaming environment). A streaming environment is called

a variable streaming environment if the tokens do not have a constant time interval

δi. Hence ∃i, j : i, j ∈ I ∧ δ(i) 	= δ(j).

Definition 5 (constant streaming environment). The data stream whether consumed

or produced by an applications is called a constant stream, if the time delay δ between

two consecutive tokens has a constant time value. Hence ∀i : i ∈ I ⇒ δ(i) = δ

One major parameter in streaming applications is their input and output throughput.

The throughput basically denotes the speed of data tokens. In the simple situation

of constant-stream environments we can say that the throughput is the reciprocal

of the inter arrival time delay δ. In order to generalize the definition of throughput

for both constant and variable-stream environments, we introduce the concepts of

maximum throughput and average-throughput based on a sliding window of input

13



tokens. Sliding windows are used in order to model the input and output mapping

relationships.

Since it is the application at hand which dictates the input output relationship, we

generalize the definition of throughput. From system theory [15] we know that a

system is called an input-output system, if some of the systems signals are designated

as inputs and some as outputs. A relationship or rule interrelates the input and

output signals.

Definition 6 (Input-Output systems). An input-output (IO) system is defined by a

signal set U called the input set, a signal set Y called the output set, and a subset

R of the product set U×Y, called the rule or relation of the system. Any pair (u, y)

with u ∈ U, y ∈ Y, and (u, y) ∈ R is said to be an input-output pair of the system,

with u the input signal and y a corresponding output signal.

Definition 6 states that for each input value u there is a set yu = {y ∈ Y|(u, y) ∈ R}.
If for each input u there exists a single corresponding output y, then the system is

called an input-output mapping system. I.e. R is a function. The sets U and Y may

be of any kind. In practice they will contain streams, hence U ∈ (I → V) in which I

identifies the tokens and V the set of all values that can be bound to the tokens.

Further a system is called memoryless if the current output of the system at each

time instance is fully dependent of the current input value alone and not by past or

future values of the input. A system is called a memory system or state system if it

is not memoryless.

A system is called time-invariant if a time shift in the input signal causes an identical

time shift in the output signal.

A system is called causal if the output of the system is independent of future val-

ues of the input signal hence dependent only on the previous inputs of the sys-

tem. Then what does in-dependability actually mean? We say that for the function

Z = F (x1, · · · , xn, y1, · · · , ym), Z is independent of x1, · · ·xn for y1, · · · , ym iff

[∀x1, · · · , xn, x′1 · · ·x′n : F (x1, · · · , xn, y1 · · · ym) = F (x′1, · · · , x′n, y1 · · · ym)]

Definition 7 (causality). Let a system be described by y = F (x). in which x and y

are streams, i.e. x, y ∈ (I → V).
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Let x≤t and x>t be defined by:

x = x≤t + x>t and x≤t(i) = 0 if time(i) > t

x>t(i) = 0 if time(i) ≤ t

(2.2.1)

Then the system F is called causal if

∀t : ∀x≤t, x>t, x′>t : F≤t(x≤t + x>t) = F≤t(x≤t + x′>t) (2.2.2)

In this thesis we restrict our self to the class of systems which are causal and time-

invariant. Whether the system is memoryless or not is not an issue as we will cover

both situations although, in most real applications, we are limited by the memory

requirements of the design and hence systems with an infinite memory requirement

are not allowed.

Due to the class of systems we cover, an output token can be dependent upon a limited

number of consecutive input tokens, and in the most simple case just one token. We

are interested in the throughput and latency requirements of such systems and in

order to generalize the model we redefine the throughput formally by introducing the

concept of stream windows which is given in definitions 8 and 9. Stream windows

can be defined in two ways: first it can be defined as a bounded time interval which

contain one or more tokens or it can be defined as a variable time interval (non zero

interval) which contains a constant number of tokens.

In the rest of this thesis we assume that in the case of variable streaming environments,

the input or output stream has an upper-throughput bound and no lower-throughput

bound. Hence there is a maximum input throughput parameter for the designers of

the application at hand.

Definition 8 (fixed time stream window). A bounded time interval τ starting from

the initial time t is called a fixed time stream window and is denoted by Wtime(t, τ).
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Definition 9 (fixed token stream window). A variable time interval starting from

the initial time t and which contains exactly m tokens is called a fixed token stream

window and is denoted by Wtoken(t,m).

Based on definitions 8 and 9 we can define the following functions: N(W (t, τ))

which gives the number of tokens available within a fixed time window stream and

T (W (t,m)) which will give the time interval of a fixed token stream window. Now we

expand the throughput definition given in definition 10 and introduce the concepts of

maximum, minimum, and average throughput.

Based on the above window definitions we say that throughput is a function of window

length and time.

Definition 10 (Throughput).

Throughput(t, τ) =
N(W (t, τ))

τ
(2.2.3)

Definition 11 (minimum token delay). The minimum time delay between two con-

secutive tokens within the stream window W (t, τ) is δmin(t, τ) and is formally defined

as follows:

[∃i : t ≤ i < t + τ ∧ δmin(t, τ) = time(i + 1) − time(i)]

∧[∀j : t ≤ j < t + τ ⇒ time(j + 1) − time(j) ≥ δmin(t, τ)]
(2.2.4)

Definition 12 (maximum token delay). The maximum time delay between two con-

secutive tokens within the stream window W (t, τ) is δmax(t, τ) and is formally defined

as follows:

[∃i : t ≤ i < t + τ ∧ δmax(t, τ) = time(i + 1) − time(i)]

∧[∀j : t ≤ j < t + τ ⇒ time(j + 1) − time(j) ≤ δmin(t, τ)]
(2.2.5)

Definition 13 (Average token delay). The average token delay of the stream window

W (t, τ) is δavg(t, τ) and is formally defined as follows:

δavg(t, τ) =
τ

N(W (t, τ))
(2.2.6)
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Note: that definition 10 basically dictates that throughput is N(W (t,τ))
τ

and, for the

case of constant stream windows, if τ is the token time delay δ then throughput = 1
δ
.

In real applications there is a bound on the input throughput. Also the output

throughput is bounded by the latency of the application. We say the that the system

is BIBO stable if it has a Bounded Input throughput and a Bounded Output through-

put. Now that we have defined the token delays and the throughput, we commence

by defining the latency of the application.

Definition 14 (latency). The latency of a BIBO stable application is the time taken

to process an output token, given all its required input tokens under the input and

output throughput constraints of the environment. The latency is denoted by Lat.

The throughput constraints of the environment and the specification of the application

determine the latency specifications of the application. We consider for the class of

applications mentioned in this thesis, that the latency is a design parameter and that

its constraints are obtained from the environmental throughput constraints and the

computational power available for the implementation.

2.3 Application

The next part of the problem analysis is the application itself. If we consider the

application on its own without its surrounding environment, it will become obvious

that it can be modeled in many ways. In this thesis we develop our own model, as

we believe that this model will fit best to the solution approaches presented later in

this thesis.

In our approach we model a streaming application as a, modified, directed acyclic

graph called the application graph, where the input tokens di will arrive at the start

nodes of the application graph. We call the model modified because there is one extra

property added which is not covered by the standard graph definition. In a graph

model, ordering of the inputs is not covered by the definition. In real functions and

algorithms, ordering of the inputs is eminent, and hence in order to allow for this

property we will tag the inputs of a node in order to distinguish between them. The
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tagging scheme used basically numbers the ports of a node and distinguishes the

inputs from outputs.

Definition 15 (Application Graph ”AG”). The streaming application is modeled as

a modified directed acyclic graph DAG called AG = 〈V, E〉 where V is the set of nodes

representing the functions of the applications and E is the set of edges connecting

those nodes. The set of nodes V contains at least two special nodes an input node

and an output node. The input and output ports of a node are tagged by a number

and a letter in order uniquely identify them, distinguish between inputs/outputs and

to allow for the input and output orderings of the function modeled by the node.

Note: Many although not all applications can be modeled in such a way. The applica-

tion graph definition used does not allow for cycles, as they will affect the synchroniza-

tion mechanism described later in this thesis. The nodes of the application graph per-

form functions on the token values (operands), such that out(i) = F (in1(i), in2(i), . . .)

in which ink(i) denotes the value of token i.

Functions of an application can perform their computation in a constant time or

variable time. In this thesis we make a distinction between two kind of functions based

on their execution behavior, functions which have an input dependent execution time

and functions which have a constant execution time no matter what the input value

is. Basically the execution, in a certain implementation technology, of a function

commences by triggering a number of operations until the output result is obtained.

Searching the age of a person in a data base can also be considered as a function which

maps a given name of a person from the set of names (name domain) to the age of that

person from the set of 〈name, age〉 tuples (co-domain). One implementation could be

obtained by iterating the complete list of 〈name, age〉 combinations, the result will

be found in a fixed constant time and the number of operations performed in order

to find the result is also a constant. Another implementation could be performed by

searching the list until the result is found and then skipping the rest of the list, hence

the implementation of the function will consume a variable number of operations,

based on the name (input) given to the search function.

18



In order to model this property we have to distinguish between the various implemen-

tation characteristics based on their execution behavior. We say that an implementa-

tion of a function is data dependent non-manifest if it can consume a variable number

of operations during its execution and that this variation is based on the input value

provided. On the other hand we say the implementation of a function is manifest, if

it will consume a fixed number of operations during its execution no matter what the

input value is. We give the following definitions in order to formalize this property.

Definition 16 (non-manifest or variable latency function). An implementation of a

node V of the application graph is called a non-manifest functional node, if V is a

function of the application graph and the number of operations consumed during its

execution is dependent upon the input data d(i) provided.

Furthermore the execution of a non-manifest function is bounded between a minimum

and a maximum number of cycles.

Definition 17 (manifest or fixed latency function). The implementation of a node

V of an application graph is called a manifest functional node if under all conditions

its execution time is constant and independent of its input operands.

Note: In the implementation of functions there are many reasons which make the

implementation non-manifest, if-then-else in the function body could be one of those

reasons, but also input-dependent while loops. In this chapter, we will not go in

the programming constructs and details which cause the implementation to be non-

manifest, as this is covered in chapter 3.

From the above definitions we can deduce that each implementation of function V

within the application graph has a computational load and we specifically define the

computational load of a non-manifest function to be as follows:

Definition 18 (computation load). A data dependent non-manifest function V gen-

erates a computation load of CLV (di, dj, . . .) cycles, depending on its input token

values di, dj . . ..
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Obviously for function V the following holds:

∀d, d ∈ I CLminV
≤ CLV (d, . . .) ≤ CLmaxV

. (2.3.1)

In the design of high-throughput streaming applications, we are interested in the

work load generated by the stream samples. Hence in order to model this property

we define the workload of a streaming window as follows:

Definition 19 (Workload of a streaming window). The workload generated by a

streaming window of length m is called WL(t,m) where:

WL(t,m) =
t+m−1∑

i=t

CLA(i) (2.3.2)

WL(t,m) is the workload generated by the tokens t, t+1, . . . , t+m−1 on a processing

element A and sliding window t, t + 1, . . . , t + m − 1 of tokens t.

Figure 2.3: An example of the application graph

In figure 2.3 we notice that an application is represented as an application graph were

the nodes of the application graph are the functions of the application, the edges
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represent the data communication. Nodes of the application are augmented by a

minimum and maximum latency in iteration cycles or operations. The inputs of the

nodes are tagged in order to preserve the ordering and distinguish the inputs from the

outputs. Based on the application type it may (or may not) have multiple functions

of the same execution type. If a function of the application graph is manifest it will

have the same value for its minimum and maximum latency.

Architecture

In the synthesis process we map functions specified in the application graph to phys-

ical processing elements. Those processing elements are controlled by a clock to

synchronize their communication and interaction.

Definition 20 (Processing element). The hardware implementation of a manifest or

non-manifest function of an application graph is called a processing element.

Note: the synthesis process of an application graph will result in one or more pro-

cessing elements depending on the number of functions within the application graph.

A processing element which is an implementation of a node V , has a computation

capacity which we define as follows:

Definition 21 (computation capacity of a processing element). The implementation

of a processing element PE of a node function V , consumes Cres computation clock

cycles per operation.

For the rest of this thesis we assume that all resources of the same type have the same

computation capacity, and that one time unit is equivalent to one computation cycle

hence Cres = 1.

Note: For a non-manifest function, computation load is a property of the data and it

is the data which causes the functions of an algorithm to consume a variable number

of clock cycles during its execution.

In practice the nodes of an application graph will map to one or more processing

elements. In the design, which will be presented later, it was not always practical to
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have the same amount of processing elements as nodes within a application graph.

So to abstract from this idea while still having the same functionality we have intro-

duced the concept of an execution unit which is a collection of identical processing

elements in one hardware design. Each execution unit has its own address and can

be considered as a separate entity of the total design.

Definition 22 (Execution Unit (EU)). A collection of processing elements that im-

plement the same functionality and their underling control and communication mech-

anism is called an execution unit denoted by EU.

The designers of an application can map the nodes from an application graph to an

execution unit but they can not map them directly to the processing elements of this

execution unit. As this step is done automatically by the scheduler of this execution

unit at run time. Although this might be premature the exact details to the design

of the execution units is given in chapter 5.

Definition 23 (Data Flow Machine (DFM)). A collection of EUs and their intercon-

nection network, which realizes the node communication specified by the application

graph is called a DFM .

From the above definitions we notice that the synthesis process of an application graph

can result in a DFM which may have one or more execution units EUs, where each

EU has one or more processing element PE. The EUs are connected by an intercon-

nection network. This interconnection network mainly realizes the communication

specified by the set of edges of the application graph.
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Chapter 3

Non Manifest Algorithms

In this chapter we analyze the behavior of non-manifest algorithms. We

show how to analyze the algorithm specifications and how to determine

non-manifest behavior. Once non-manifest behavior is determined the

designers of the system are left with a number of choices which can

be exploited. Designers can choose for solutions which stretch the non-

manifest behavior of the algorithm to a manifest behavior, hence providing

the opportunity to build a processor architecture using static scheduling

schemes. The other option is to build a processor architecture which can

exploit the non-manifest behavioral properties using dynamic scheduling

schemes. Both solutions have their pros and cons; it is the applications

at hand and the requirements of the system that dictate what solution to

take, hence we will only emphasize on the choices the designer has.

3.1 Introduction

In high-level synthesis of application specific processors (ASIP), algorithm specifica-

tions are needed in order to fine tune the implementation of the processors hardware

elements. Algorithms can be classified as either manifest or non-manifest. In a man-

ifest algorithm the number of loop body iterations is fixed and the delay of the loop

body is constant. This implies that the total latency of the loop computation has a
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constant number of clock cycles for a certain processor architecture. This property is

used by the compiler tools of statically scheduled architectures, such as the PHIDEO

architecture developed by Philips research[4], in order to plan and map the loop

computations onto processing elements at compile time. The controller of such an

architecture simply activates the required processing element at the pre-programmed

clock value and handles the data transfers to and from the required operand memory

addresses. In order to do so, the tool chain statically schedules the operations of the

application taking into consideration the maximum number and type of processing

elements (processing element constraints), the maximum amount memory allowed

(memory constraints), and the maximum network bandwidth (communication con-

straints). The constraints are fed into an Integer Linear Programming (ILP) solver

to find a valid (nearly optimal) solution. In order to function properly and find

a valid solution the (ILP) solver requires the exact timing constraints of the loop

operations of the application or algorithm at hand. This limits the architecture to

applications with only manifest loops or inefficient implementations of applications

with non-manifest loops. If an application contains loops that have delay variations

due to control sequences or due to data dependencies a static schedule is only possible

by scheduling the situation with the worst case delay.

In this section we demonstrate the behavior of non-manifest loops, by providing a

couple of real life algorithms. We show how to analyze the algorithm specifications

and how to recognize non-manifest behavior. Once non-manifest behavior is deter-

mined we can profile the algorithm and determine its execution-latency frequency

distribution. The frequency distribution is used to estimate the expected workload

and the maximum workload. As these parameters are used in the design process to

determine the required system parameters, such as number of processing elements,

total system latency, and memory of the processors such as described in chapter 5.

Once the non-manifest behavior has been characterized and the application algo-

rithms are profiled, the designers of the system are left with a number of choices

which they can exploit.
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3.2 Examples of Non Manifest algorithms

In this section we provide a few algorithms with non-manifest behavior; For example

the GCD algorithm, Russian multiplication, Cordic rotation, and Montgomery inverse

algorithms. The properties that are of importance are :

• Maximum load generated by a single computation CLmax

• Latency in clock cycles of a single iteration of the loop body of the algorithm

Cres

• Average load consumed by the algorithm when provided with an input stream

of operands of known length

In order to obtain this information, the algorithms were implemented in C/C++

and compiled using the gcc compiler. Iteration counting code was added to the

source code, and the algorithms were profiled exhaustively by using all possible input

combinations. It seems that the number of iterations consumed, of the loop body,

multiplied by the load generated by executing a single iteration of the loop body is

an indication of the load consumed by a non-manifest algorithm. In turned out in

practice that this model is not accurate enough, instead a profiling technique which

involves adding profiling code around the control structure of the loop body is much

more accurate. Non the less in the upcoming sections of this chapter will use the

variations in the iterations of the loop to demonstrate the behavior and properties of

non-manifest algorithms.

3.2.1 Greatest Common Divider (GCD)

We use the Euclid’s Gcd algorithm to demonstrate the behavior of a non-manifest

data dependent loop. The algorithm details are given in 3.1, the algorithm basically

calculates the greatest common divisor or highest common factor g of a pair x, y of

integers. Most modern factoring methods employ the Gcd algorithm inside, which is

a real tribute to Euclid 1. One of the properties of the Gcd algorithm algorithm is

1Euclid of Alexandria: born about 325 BC, died about 265 BC in Alexandria, Egypt. He is
the most prominent mathematician of antiquity best known for his treatise on mathematics The
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�

1 int gcd ( int x , int y ){
2 int g ;
3
4 g = y ;
5 while ( x > 0 ){
6 g = x ;
7 x = y % x ;
8 y = g ;
9 }

10 return ( g ) ;
11 }

�� �

Figure 3.1: Gcd algorithm

�
## i t e r x y g ##

1 46368 , 28657 , 28657 ,
2 28657 , 46368 , 46368 ,
3 17711 , 28657 , 28657 ,
4 10946 , 17711 , 17711 ,
5 6765 , 10946 , 10946 ,
6 4181 , 6765 , 6765 ,
7 2584 , 4181 , 4181 ,
8 1597 , 2584 , 2584 ,
9 987 , 1597 , 1597 ,

10 610 , 987 , 987 , maximum number o f i t e r a t i o n s f o r 16 b i t i n t e g e r va lues
11 377 , 610 , 610 ,
12 233 , 377 , 377 , i s obtained by gcd (46368 ,28657)
13 144 , 233 , 233 ,
14 89 , 144 , 144 ,
15 55 , 89 , 89 ,
16 34 , 55 , 55 ,
17 21 , 34 , 34 ,
18 13 , 21 , 21 ,
19 8 , 13 , 13 ,
20 5 , 8 , 8 ,
21 3 , 5 , 5 ,
22 2 , 3 , 3 ,
23 1 , 2 , 2 ,

0 , 1 , 1 ,
gcd (46368 , 28657) == 1 ,
num i t e r a t i o n s == 23

�� �

�
## i t e r x y g ##

1 4 , 32768 , 32768 ,
0 , 4 , 4 ,

gcd (4 , 32768) == 4 ,
num i t e r a t i o n s == 1

�� �

Figure 3.2: (a) Worst case execution versus (b) Best case execution of a Gcd algorithm
for 16 bit integer values

that it has data dependent latency. The number of iterations of the loop depends on

Elements. The long lasting nature of The Elements must make Euclid the leading mathematics
teacher of all time.
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the input pair x,y as can be seen in figure 3.2. For 16 bit input values the maximum

number of iterations is 23 and the minimum number of iterations is 1. Assuming that,

for a specific processor implementation, each iteration has the same number of clock

cycles in other words the delay of the loop-body (and hence for a single iteration)

is constant2. A general non-accurate way to calculate this constant is to count the

number of instructions of the loop body and assume that each instruction has a

constant delay of one clock cycle. More accurate results are obtained by counting the

number of executed instructions of a loop body. This involves profiling the application

on the real processor. Based on this analysis we may assume the Gcd delay for one

loop iteration Cgcd is 3 clock cycles.
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Figure 3.3: Gcd distribution for 16 bit integer values, each iteration taken Cgcd=3
clock cycles

Profiling the Gcd algorithm for all possible input combinations of 16 bit input values

2Off course this constant value depends on the type of processor used
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results in the frequency distribution given in figure 3.3. The distribution shows on the

x-axis the number of clock cycles the algorithm takes and on the y-axis the number

of input combinations that, gave that amount of clock cycles. From the distribution

we notice that the average number is around 27 clock cycles, the maximum amount

of clock cycles is 23 ∗ 3 = 69 clock cycles.

Note: The amount of clock cycles is not predictable given the values of x and y

(assuming x 	= y).

3.2.2 Russian Multiplication

�

1 #define odd (x ) ( x & 0x1 )
2
3 int rmult ( int x , int y ){
4 int g ;
5
6 g = 0 ;
7 while ( y > 0 ){
8 i f ( odd (y ) ){
9 g += x ;

10 }
11 x <<= 1 ; // s h i f t l e f t
12 y >>= 1 ; // s h i f t l e f t
13 }
14 return ( g ) ;
15 }

�� �

Figure 3.4: Russian Multiplication algorithm

The Russian multiplication algorithm (see 3.4) is another form of a non-manifest

algorithm. The loop body has three instructions (including the if statement), hence

the computation delay of a single iteration Crmult = 3. The algorithm is non-manifest

data dependent.

From the frequency distribution given in 3.5 we notice that the maximum number

of clock cycles are to the right of the distribution. This is caused by the fact that

the latency in clock cycles is proportional to the size of the input value which is the

nature of the algorithm, larger numbers take more time to compute. This property
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Figure 3.5: Profiling results of the Russian multiplication algorithm

makes the algorithm predictable. Designers can predict how long the algorithm will

take based on the maximum number of bits that can represent the input numbers.

One might argue that the if-statement in line 8 is not always taken and hence the

latency of the loop-body is not always 3 clock cycles. This is true, but for the worst

case situation the latency is 3 clock cycles. In order to obtain more accurate results,

this algorithm should be profiled with the original data set of the environment in

which it has to operate.

Note: if the application contains loops that are manifest or non-manifest with embed-

ded control statements, the latency of the loop body would be variable at run time.

Such loops are called variable latency loops.
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3.2.3 Cordic Rotation

The algorithm presented in figure 3.6 is a version of the Cordic rotation algorithm

[16]. The Cordic algorithm is extensively used in the area of signal processing for

approximating trigonometric functions including sine, cosine, magnitude and phase.

Cordic revolves around the idea of ”rotating” the phase of a complex number, by

multiplying it by a succession of constant values.
�

1 #define MAX ITTER 32
2 #define APROXZERO 0.000001
3
4 double r o t a t e ( complex c ){
5 double z , p , tmpx , k ;
6 int l ;
7
8 z=0;
9 l =0;

10 while ( ( l<MAX ITTER) && ( fabs ( c . y)>=APROXZERO)){
11 p = phaseTab [ l ] ;
12 k = kTab [ l ] ;
13 tmpx = c . x ;
14 i f ( c . y >= 0 .0 ){
15 c . x += ( c . y ∗ k ) ;
16 c . y −= (tmpx ∗ k ) ;
17 z += p ;
18 } else {
19 c . x −= ( c . y ∗ k ) ;
20 c . y += (tmpx ∗ k ) ;
21 z −= p ;
22 }
23 l++;
24 }
25 return z ;
26 }

�� �

Figure 3.6: Cordic rotation algorithm

However, the multiplies can all be powers of 2, so in binary arithmetic they can

be done using just shifts and adds, and hence no actual multiplier is needed. This

property makes Cordic suited for hardware implementations were no multipliers are
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available. The Cordic rotation algorithm is a convergent non-manifest loop. This

means that the loop converges to the correct answer and the more iterations are

consumed the better the quality of the result is. The Cordic rotation algorithm was

chosen because of its converging behavior which can be exploited by designers in order

to tune the system quality parameters.
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Figure 3.7: Calculated Cordic error v.s. stop value

In figure 3.6 the Cordic rotation algorithm that is profiled is shown. The algorithm

stops when the absolute value of the imaginary component of the complex number c,

hence the value of the variable c.y (line 10 of the code example in figure 3.6) is less

than the constant value APPROXZERO or when the maximum number of iterations

has been reached. The phaseTab[i] is a lookup table for the tan−1( 1
2i ) function and

kTab[i] is a lookup table for the 1
2i function. Both are needed to determine the angle

accumulation during the iterations of the loop.

31



 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90

la
te

nc
y 

in
 #

 o
f i

te
ra

tio
ns

angle in 10^(-1), 10^(-4), 10^(-8) degrees

cordic iterations

stop value = 0.1
stop value = 0.0001

stop value = 0.00000001

Figure 3.8: Calculated Cordic angle v.s. latency in iterations

In order to profile this algorithm, we generated all consecutive angles between 0.0

and 90.0 degrees using steps of 0.1 degree. Those angles were used to generate the

complex numbers on the unit circle c = r.(cos(φ) + i sin(φ)). Hence for angle φ

the real part of the complex number c.x = cos(φ) and the imaginary part of the

complex number c.y = sin(φ) and r =
√

(c.x2 + c.y2) = 1. The generated complex

numbers were then fed to the Cordic rotation algorithm which calculated the angle

of the complex number and the loop iterations were profiled. The latency of the loop

body of the Cordic algorithm is constant because both the latencies of the if-part

statements 14 . . . 16 and else-part statements 18 . . . 20 are identical. The latency of

the loop body can be estimated to Ccordic = 7 clock cycles, which is an approximate

value for the number of instructions consumed during a single iteration.

Figure 3.7 shows the angle error made, in degrees, for stop values of 10−1, 10−4

and 10−8. Clearly as we can see in figure 3.7 the quality of the resultant angle is
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based on the input stop value APPROXZERO. Notice that the resultant angles, for

APPROXZERO = 10−1, varies between +/− 5.7 degrees. The actual error made is

periodic and dependant on the resultant phase angle of the complex number c which

is an input value to the algorithm.

In figure 3.8 we see, for various values of APPROXZERO, the number of iterations

consumed for each input complex number. Note the angles of the complex numbers

had the range [0.0 . . . 90.0] degrees. For APPROXZERO = 0.1 the loop of the

algorithm varied between 1 and 4 iterations and for APPROXZERO = 10−8 the

algorithm varied between 1 and 27 iterations. For complex numbers with 45 degree

angles and APPROXZERO = 10−8, the number of loop iterations is always 1 and

for complex numbers with 90.0 degrees angles, the number of loop iterations = 2, for

real numbers (hence the angle is zero) the number of loop iterations is zero (this also

holds for other values of APPROXZERO). All other angles have 18 as the minimum

number of loop iterations.

Finally in figures 3.9, 3.10, 3.11 the iteration distribution for the stop values 10−1, 10−4

and 10−8 are shown. The distributions were obtained by profiling the Cordic algo-

rithm on the range of complex numbers described. Note that the distribution form

is not similar, hence the value of APPROXZERO influences the form of the distri-

bution. Also in figure 3.11 the maximum number of iterations 27 has the maximum

number of occurrences. This may suggest, that static scheduling is the best way to

schedule such applications since most of the input operands produce the maximum

number of iterations. One should not be fooled by this assumption, since the input

data set provided for profiling is whole range of complex numbers in the upper right

quadrant of the unit circle. This range has a uniform distribution of angles. In order

to obtain realistic distributions, one should profile the application with the actual

data set provided by the environment in which the application will operate. Non the

less application designers, which intend to use such type of algorithms, now have the

quality of the result as an extra criterium in the design process. They can choose to

limit the number of iterations hence sacrificing the quality of the results, in order to

speed up the calculation.
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Figure 3.9: Calculated Cordic frequency distribution, stop value is 10−1
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3.2.4 Montgomery Inverse

�

1 #define even (x ) ( ( x&0x1 ) == 0)
2
3 /∗
4 ∗ c a l c u l a t e s the modular i n v e r s e in the Montgomrey domain
5 ∗ i npu t s : p i s a prime number and 0 < a < p
6 ∗ ou tpu t s : x=(aˆ−1) mod p
7 ∗/
8 double montgom inv ( long p , long a ){
9 long u , v , r , s , k ;

10
11 u = p ; v = a ; r = 0 ; s = 1 ; k = 0 ;
12 while (v>0){ // phase i
13 i f ( even (u ) ){u/=2; s ∗=2;}
14 else i f ( even (v ) ){ v/=2; r ∗=2;}
15 else i f (v>=u){v=(v−u ) /2 ; s+=r ; r ∗=2;}
16 else {u=(u−v ) / 2 ; r+=s ; s ∗=2;}
17 k++; // count the number o f i t t e r a t i o n s
18 }
19 while (k>0){ // phase i i
20 i f ( even ( r ) ){ r /=2;}
21 else { r=(r+p )/2 ;}
22 k−−;
23 }
24 return p−r ;
25 }

�� �

Figure 3.12: The Montgomery inverse algorithm

The Montgomery inverse [41][46] is used to compute the inverse of an integer modulo

a prime number. Calculation of modulo inverses is a common operation used within

cryptographic systems. We examine the Montgomery algorithm given in figure 3.12

for non-manifest behavior. The Montgomery algorithm expects 2 input operands P,a

where P must be a prime number.

The Montgomery algorithm was profiled using the following prime numbers 3, 7, 13,

31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521 as input values of the

first operand P and for the second operand we provided all possible combinations

up to the value of the first operand P provided. The distribution results for P =
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Figure 3.13: Profile results of the Montgomery inverse algorithm. The latency of the
loop body is assumed to be 13 Clock Cycles. Which is an approximate value for the
number of instructions of the loop body

65521 and a is all combinations from 1 up to P is given in figure 3.13 and the

various distributions obtained by fixing the value of the first operand P is given in

figure 3.14. Since the actual delay of the loop body is not of any further importance

and can be obtained by profiling a single iteration of the algorithm on the target

implementation platform. In this distribution we choose the value of Cmontgom = 13

which is approximate value of the number of instructions of the loop body.

From the distribution results we notice that the algorithm has an average latency

around 22 ∗Cmontgom clock cycles and the maximum number of iterations is 31. This

results in 286 as the average number of clock cycles and 403 as the maximum number

of clock cycles for the Montgomery algorithm. These results are not very accurate
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Figure 3.14: Montgomery profiling results for various prime number sets

since the loop body does not have a constant latency and is dependent on the exe-

cution path taken. In chapter 6 we use a better technique to profile this algorithm.

This technique profiles the algorithm based on the actual path taken during execution,

hence the obtained results are much more realistic.

3.3 Statistical properties of non-manifest algorithms

In order to show the behavior of non manifest loops within an application we examine

the application given in figure 3.15. The application consists of a Montgomery - Gcd

- Montgomery combination of non-manifest algorithms.

If the Montgomery - Gcd - Montgomery application is to be implemented on a stati-

cally scheduled architecture the expected latency would be the sum of the maximum
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Figure 3.15: The Montgomery - Gcd - Montgomery algorithm as an example of a
non-manifest loop application

latency of the individual non-manifest loops which is 2∗(31∗13)+(23∗3) = 875 Clock

cycles. Where we can assume that the maximum number of iterations of Montgomery

is 31 and the number of clock cycles of the loop body is 13, the maximum number

of clock cycles of the Gcd algorithm is 23 and the number of clock cycles of the loop

body is 3.

On the other hand if we would have taken the average latency value of the individual

distributions as given in figure 3.3 which is 27 clock cycles and figure 3.13 which is

300 clock cycles, the expected latency would be 2∗300+27 = 627 clock cycles. From

the actual distributions of the individual nodes as given in figure 3.16 we can see that

the actual distributions are dependent, hence the real average value lies around 500

clock cycles as shown in figure 3.16 (d).

Note: the given distribution is based on an input value set which contains all combi-

nations of possible 16-bit input values. In practice the input data would be a subset
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of all possible combinations and hence the actual distributions may vary even fur-

ther. Also for the Montgomery algorithm the loop body is control intensive and each

control path consumes a different number of clock cycles, hence it is not accurate to

assume that the loop body has a constant latency.
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Figure 3.16: Montgomery-Gcd-Montgomery application distributions

3.4 Conclusions

Non manifest algorithms are characterized by having a variable execution latency. The

variation in latency may be due to control sequences in the instruction code which

will lead to various execution path’s. Each execution path has its own delay and

hence the actual delay of the algorithm is not known at compile time. The variation

in execution latency of the non-manifest algorithm may also be due to input data
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dependency. Such non-manifest loops are called non-manifest data dependent. They

are characterized by having a variable number of iterations of the loop body. The

actual number of iterations depends on the input data. Taking the number of loop

iterations as a design parameter is not sufficient. It is not general enough to cover

all application examples. A better choice for profiling is to use the actual amount of

clock cycles consumed on an implementation processor this is described in chapter 5

and chapter 6.

By profiling the execution latency of such applications we were able to determine

the average and maximum execution load. When an application contains multiple

inter-connected loop algorithms the distributions of the individual nodes are not in-

dependent. In order to determine the average load, the application must be profiled

using the exact input data set which would be provided at run-time from the real

environment.

The maximum load of a non-manifest algorithm for a single input operand CLmax

is a design parameter which will be used further on in chapter 5. This parameter is

used to determine the amount of processing elements needed to order cope with a

certain input stream workload. This parameter is obtained by profiling the application

and noting the maximum obtained number of clock cycles for a single computation.

Profiling the application with a typical input stream, that represents the stream in

which the application will have to operate, will obviously provide the best results.

In some situations the input set provided to a non-manifest algorithm leads to a

constant execution latency. If this occurs the designers of a system should analyze

the consequences, as a dynamic scheduling scheme might not always be beneficial due

to system overhead.

3.4.1 Summary

The class of non-manifest is summarized in table 3.4.1. Non manifest loops can be

categorized by being either analytic or convergent.

Table 4.1 summarizes the bench mark results of the non-manifest algorithms discussed

in this chapter.
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iterations loop body algorithm example

fixed data dependent Gcd analytic
variable fixed Cordic rotation convergent
variable data dependent Russian multiplication analytic

Table 3.1: Summary of profiling results
name average # cc maximum # cc dependency

gcd 27 69 Cgcd = 3
rmult 43 51 Crmult = 3
cordic 175 189 Ccordic = 7, stop value = 10−8

mont 286 403 Cmont = 13
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Chapter 4

Dynamic Hardware Scheduling

Architectures

In this chapter we explore various hardware dynamic scheduling architec-

tures from literature. The strong and weak points of each architecture are

identified and compared to each other.

4.1 Introduction

In digital signal processing (DSP) applications, many algorithms have a repetitive and

periodic nature [1]: the same computations must be executed on arrival of each new

data sample or block of samples. Some loops within a computation require a constant

number of clock cycles in their loop-body and their number of iterations is fixed, they

thus have a fixed total execution time. Such loops are called manifest-loops. Non-

manifest data dependent loops, on the other hand, are those where the number of

iterations are data dependent and hence have a variable total execution length. By

high-level synthesis, the functions of the application are translated into hardware

elements that will perform the computations. Such hardware elements are called

processing elements. The functions for non-manifest algorithms can be classified as:

processing elements for (1) analytic functions and (2) non-analytic or soft functions.

Analytic functions are those that have exactly one answer and in order to calculate
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that answer the processing element requires a variable number of iterations and thus

clock cycles. The exact amount of clock cycles is dependent of the input data and

is bound between a minimum and a maximum number of clock cycles. Non-analytic

functions, on the other hand, converge to the required result in time, hence the upper

bound is not fixed and is dependent on both the input data and the required quality

of the computation.

Scheduling, which is the task of specifying the order and the allocation in time for

each processing element, can be done either at design time (static scheduling) or at

run time (dynamic-scheduling). When scheduling loops of non-analytic functions, one

can statically schedule the loop and set its loop count to a fixed number of iterations.

The quality of the result in the case of too few iterations would be sacrificed and in

the case of too many iterations we unnecessary perform too many clock cycles. This

shows that static scheduling of non-manifest non-analytic processing elements is not

without costs.

Figure 4.1 shows the difference between static scheduling and dynamic scheduling for

the application graph given in chapter 2 figure 2.3. When there are no processing

element constraints, the static schedule will consume 29 clock cycles. The dynamic

schedule on the other hand is data dependent and hence the operand data of the

functions determent the latency. When there are no processing element constraints,

the latency will range from 11 clock cycles which is the minimum latency of the

critical path (of the application graphof figure 2.3) and 29 clock cycles which is the

maximum latency of the critical path of the application graph.

4.2 Static scheduling

In static scheduling, the order in which the processing elements are to execute is

determined at compile time. Examples of statically scheduled architectures are Phideo

designed at Philips research [4], the Transport Triggered Architecture TTA which

is an application-specific instruction-set processor (ASIP) architecture template that

allows easy customization of processor designs [12][14][13], and the Trimedia processor

which is a VLIW digital signal processor from Philips Semiconductors [19]. In order
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Figure 4.1: Example of a static (top) v.s. dynamic schedule (bottom). The static
schedule always has the worst case latency which is 29 clock cycles in this figure. The
dynamic schedule has a data dependent latency between which can range from 11
and 29 clock cycles, based on the actual operands provided

to perform this task the high-level synthesis compiler has to know the order (function

dependencies) in which the processing elements are to execute and the execution

time of each processing element. This information is needed in order to allocate the

processing elements to time instances and hence complete the execution schedule.

The way in which the processing elements are activated in time is dependent on the

control mechanism used.

4.2.1 Phideo

The Phideo [4] design methodology aims at finding hardware structures for video algo-

rithms with minimum integrated circuit area requirements given the video algorithm

and its timing constrains. The algorithm is represented by a signal flow graph, which

consists of nodes representing operations and arcs representing data dependencies.
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The hardware structure consists of processing units (PUs) on which the operations

are executed, memories to store the intermediate data, address generators to supply

the memories with addresses for reading and writing the intermediate data, inter-

connections consisting of wires and multiplexers for the transportation of data, and

finally a controller to give the correct control signals. Figure 4.2 gives a schematic

view of the architecture. The hardware generated by Phideo is synchronous, there is

a central clock which rules the synchronization between different blocks. The clock

frequency is usually a multiple of the sampling frequency.

The task of the scheduler within Phideo is to determine for each operation within the

abstracted signal flow graph (the algorithm specification) a clock cycle on which it

has to be started and to assign those operations to processing units. For each of the

operations it is specified on which type of processing unit it has be executed and for

each processing unit the time shape (which indicates liveness of the processing unit

in time) and area costs are specified. Furthermore, timing bounds are given, e.g. on

input and output operations. The goal of scheduling is to minimize the total area

that is required. Because of the application domain, not only processing units but

also memories have a significant contribution to the total area.

Phideo solves the scheduling problem, which is shown to be NP hard, by a primal

all-integer Integer Linear Program (ILP) [32] algorithm.

The control mechanism of Phideo consists of a number of cascaded counters which are

synchronized by a central clock. Each counter triggers an event that will activate one

or more operations, transport the data to and from memories and trigger the address

generators. To function properly the exact time needed to perform an operation has

to be known in advance by the scheduler. Therefore, the Phideo scheduler cannot be

used for non-manifest or data dependent algorithms, as their execution latencies are

not known in advance.
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Figure 4.2: The target architecture of Phideo

4.2.2 Pipelining

The basic pipelining mechanism is a static scheduling technique whereby multiple in-

structions are overlapped in execution. Pipelining takes advantage of the parallelism

that exist among the actions needed to execute an instruction. It is nowadays one of

the key implementation technique used to improve the performance of CPUs. Pipelin-

ing splits the actions needed for instruction execution into a number of phases. The

actual number of phases depends on the independent steps needed to execute an in-

struction. A typical pipelined processor would split up the execution of an instruction

into a number of phases1:

• IF: Instruction Fetch, the actual fetching of the instruction from memory

1The pipeline phases described belong to the MIPS processor
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• ID: Instruction Decode, decoding the instruction and determination of the op-

eration to be performed

• EX: Execution, the actual execution of the operation

• MEM: Memory Access, memory accesses that might be needed

• WB: Write Back, writing back the result of the operation either to memory or

registers

Figure 4.3 shows a typical execution behavior of an ideal pipelined architecture with-

out any conflicts. Notice the overlap in phases (pipeline execution stages) of various

instructions.

Figure 4.3: A typical pipelined execution behavior

In an ideal situation (a situation with no hazards and were all pipeline stages are of

equal length), the speedup from pipelining would be equal to the number of pipeline

stages. Superpipelined architectures [27] try to improve the speedup by maximizing

the number of pipeline stages, this is mainly due to the fact that pipelined architec-

tures are only capable of achieving a peak throughput of one instruction per clock

cycle in the ideal situation. Thus the only way to improve the performance in this

case is to increase the clock frequency. A Superpipelined CPU in general would have

a very high clock frequency in the range of GHz. In such an organization the han-

dling of hazards effectively is very critical. Since any stalling or re-initialization of the

pipeline will degrade the performance of the CPU significantly. Moreover, as more

pipeline stages are added, and hence further dividing up the combinational logic,
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the propagation delay times of the flip-flops begins to dominate. The improvement

achieved is even less, when hazards are taken into account, the performance may ac-

tually become worse. This is especially the case in control intensive programs which

are dominated by branches and jumps.

The various types of hazards that can occur are summarized as follows [29][30]:

Control Hazards: hazards that occur due to branches or jumps and hence the

pipeline has to be flushed.

RAW data Hazards: Read after Write, an instruction tries to read a source before

a prior instruction has written that source, so it incorrectly gets an older value.

WAR Hazards: Write after Read, an instruction tries to write a destination before

it is read by a prior instruction, so the prior instruction incorrectly gets the new value.

WAW Hazards: Write after Write, an instruction tries to write a destination before

it is written by a prior instruction. The writes are performed in the wrong order, and

hence leaving the wrong value of the prior instruction in the destination.

Structural Hazards: When a processor is pipelined, the overlapped execution of

instructions requires concurrent access to some resources (e.g. register files). If some

combination of instructions can not be accommodated because of resource conflicts,

the processor is said to have a structural hazard.

In statically scheduled pipelined architectures, the compiler tries to avoid pipeline

hazards by inserting no-operation (nop) instruction in the instruction code of the

algorithm. Unfortunately not all hazards can be detected at compile time. Control

hazards that lead to severe pipeline stalls are very difficult to detect as they involve

prediction of whether branch instructions will be taken or not. Dynamically scheduled

pipeline architectures try to solve such hazards at run time by hardware means. This

will be fully discussed in the next section.

Finally we summarize by mentioning that:

(1) In an ideal situation speedup is w for a w deep pipeline

(2) Hazards reduce the speedup and

(3) not all pipeline hazards can be detected at compile time
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4.3 Dynamic scheduling in hardware

In dynamic scheduling, the order in which processing elements are to be executed is

determined at run time by the (hardware) scheduler or controller. We consider only

architectures that have multiple FU’s that can run in parallel. Dynamic schedulers

were introduced to speed up program execution by solving dependencies at run time

instead of at compile time. Dynamic hardware schedulers are wide spread nowadays

[18] and most of them are used within superscalar architectures like the Intel Pen-

tium. In the next sections we discuss dynamic hardware scheduling schemes based

on a dataflow model of execution (such as the dynamic dataflow machine) and their

counter part the control flow model of execution (such as the Scoreboard [30] and

the Tomasulo [22][30] scheduler). But before we delve into the details of the hard-

ware dynamic schedulers it is important to mention that dynamic schedulers try to

solve dependency conflicts or hazards at run time. In general purpose processors

the program to be executed is provided as a sequence of instructions see for exam-

ple figure 4.8. Modern processors, aim at parallelizing the instruction execution as

much as possible in order to improve performance. The amount of instruction level

parallelism (ILP) available within an instruction sequence varies from one algorithm

to another. Various techniques and architectures have been developed in order to

improve the performance or program speedup. Among those techniques is pipelining

which is described in section 4.2.2.

An alternative to superpipelining is the superscalar architecture organization. A su-

perscalar architecture tries to achieve a high ILP by using multiple FUs that can

run in parallel and at the same time make use of pipelining. A typical superscalar

machine would execute multiple instructions per clock cycle with the instruction is-

sue controlled dynamically by hardware. The data dependencies, and hence hazard

detection, are controlled by the hardware scheduler. Typically dependencies in the

instructions stream are checked for during the issue stage. In the next sections we

review hardware scheduling schemes. The dataflow execution model [33] [35] is self

scheduling and has the potential of exploiting true parallelism inherent within the ap-

plication, the Tomasulo [22][30] scheduler and the Scoreboard [30] are both scheduling
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schemes which aim at improving ILP while maintaining data dependence and avoiding

the hazards that can stall the pipeline.

4.3.1 Data flow architectures

The Data flow machines have been researched actively in the 80th [38][39][35]. Data

flow architectures make use of dynamic scheduling. Its dataflow model of execution

offers attractive properties for parallel processing. It is asynchronous, because it bases

function or instruction execution on the availability of the operands. Synchronization

of parallel activities is implicit and it is self scheduling. There is no sequencing order

for instructions except for those imposed by true data dependencies of the dataflow

program graph. Another attractive property of the dataflow model is that scheduling

of non-manifest loops is implicitly solved by the execution model. Since functions will

only execute when operands are available, theoretically when there are no resource

constraints, there will be no wasted clock cycles.

In the abstract dataflow execution model, the order of instruction execution is deter-

mined by the availability of its operands rather than by a program counter. Data val-

ues or instruction operands are carried by tokens. Those tokens travel along the edges

connecting various nodes in the program graph. Each node represents an instruction.

The edges connecting the nodes are assumed to be FIFO queues of unlimited length.

Since direct implementation of this model is impossible [35], the data flow execution

model has been classified as being either static or dynamic.

Static dataflow execution model: the static dataflow execution model allows at

most one instance of a node to be enabled for firing. The node can only execute when

all its tokens are available on it’s input edges and there are no output tokens on its

output edges.

Dynamic dataflow execution model: the dynamic dataflow execution model per-

mits activation of several instances (e.g. due to several iterations) of the same node at

the same time during runtime. To be able to distinguish between different instances

of a node, each token is tagged. The tag identifies the context in which each partic-

ular token was generated. Similar to the static dataflow execution model, a node is
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considered executable when all of its input tokens, with identical tags, are available.

Figure 4.4: The general organization of the dynamic dataflow model

The basic structure of a dynamic dataflow model is given in figure 4.4. Tokens are

received by the token matching unit, which is a memory containing a pool of waiting

tokens. The units basic operation, is matching tokens with identical tags. If a match

exists, the corresponding token is extracted from the matching unit, and the matched

token is passed to the fetch unit. If no match is found, the token remains in the

matching unit waiting for its matching partner. In the fetch unit, the tags of the

token-pair uniquely identify an instruction to be fetched from memory (operations

of the dataflow are in this case are either monadic or dyadic, hence at maximum

two operand tokens are required to perform a computation). The instruction and the

matched token pair form the enabled instruction, which is sent to the processing unit.

The processing unit executes the enabled instructions and produces the result tokens

to be sent to the matching unit via the token queue.
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Despite the dynamic dataflow model’s potential for large-scale parallel execution, a

number of weak point’s have been identified [35]:

• Overhead: an efficient implementation of the matching unit is needed to avoid

overhead due to the token matching scheme, as it has been shown that the

performance depends directly on the rate at which the matching mechanism

processes tokens [37]. An associative memory would be an ideal solution. Un-

fortunately this is not a cost effective solution since the amount of memory

needed to store tokens waiting for a match tends to be very large.

• Instruction cycle: when compared to the control part of Von Neuman archi-

tectures that use a program counter, the instruction cycle of the dataflow model

is quite extensive: it involves

(1) detecting enabled nodes,

(2) determining the operation to be performed,

(3) computing the results, and

(4) generating and communicating the result tokens to appropriate target nodes.

This leads to slow single thread performance or will degrade the performance

of applications with a low degree of parallelism.

• Data Structures and arrays: handling of data structures and arrays implies

generating an excessive amount of large tokens which will degrade the perfor-

mance. Basically the data travels with the token and hence arrays would lead

to an excessive amount of large tokens.

4.3.2 Scoreboard scheduler

Scoreboarding is a hardware dynamic scheduling technique for allowing instructions

to execute out-of-order when there are sufficient processing elements and no data

dependencies. It was named after the CDC 6600 which was the first machine to use

a scoreboard (see figure 4.5). In addition to scoreboarding, the CDC 6600 was the

first processor to make extensive use of multiple processing elements which can run

in parallel.
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Figure 4.5: The CDC 6600 processor courtesy of Control Data Corporation laboratory

In a dynamically scheduled pipelined architecture, all instructions pass through the is-

sue stage in-order (in-order issue); however, they can be stalled or bypass each other

in the second stage (read operands) and thus enter execution out-of-order. Score-

boarding [30] is a technique for allowing instructions to execute out-of-order when

there are sufficient processing elements and no data-dependencies.

Operation: Every instruction goes through the scoreboard, were the data depen-

dencies are recorded. The scoreboard determines when the instruction can read its

operands and begin execution. If the scoreboard decides that the instruction can

not execute immediately, it monitors every change in the hardware and decides when

the instruction can execute (the exact book keeping steps taken by the scoreboard

controller are depicted in appendix A.1). The scoreboard also controls when an in-

struction can write its result to the destination register. Hence all hazard detection

and resolution is centralized in the scoreboard.
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Figure 4.6: Data path of a MIPS processor with a scoreboard scheduling mechanism,
the processor contains 5 Functional Units and a register bank. There are separate
busses for data communication between the processing elements and the registers.
The scoreboard controls the datapath

The scoreboard instruction life cycle consists of 4 steps Issue, Read Operands, Exe-

cution, and Write Result.

• Issue: in the issue stage an instruction is allocated (issued) to a processing el-

ement if the processing element is free and there is no other active 2 instruction

2An active instruction is an issued instruction that has not reached its write result phase
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Figure 4.7: Scoreboard: the scoreboard consists of a number of fields which are used
to keep trace of data dependencies and insure that no hazards can occur due to
dependence violations

having the same destination register, hence Write after Write (WAW) hazards,

which occurs when an instruction tries to write an operand before it is writ-

ten by a prior instruction thus leaving the value of the prior instruction in the

destination register, are avoided in this way [30]. Upon each issue the score-

board will update its internal structure. If a structural WAW hazard exists,

the instruction issue will stall until the WAW hazard is resolved (e.g. until the

previous write instruction is finished).

• Read Operands: in the read operands stage the scoreboard continuously mon-

itors the availability of the source operands. The scoreboard recognizes that a

source operand of an instruction is available if there exists no other issued ac-

tive instruction that is going to write that operand. On the availability of

the operands the scoreboard tells the processing element to proceed reading

the operands from the registers and start the execution. By waiting for the

availability of the operands the scoreboard resolves Read after Write (RAW)

hazards dynamically. RAW hazards occur when an instruction tries to read a

source before it is written by a prior instruction, so it incorrectly gets an older

value.

58



• Execution: the execution stage is initiated upon the arrival of the operand

of a processing element. Once the computation is complete and the result is

available, the processing element will notify the scoreboard that the execution

is complete.

• Write result: Once the scoreboard has been notified by a processing element

that it has completed its execution the scoreboard will check for Write After

Read (WAR) hazards. WAR hazards is the situation that occurs when an

instruction tries to write a destination before it is read by a prior instruction,

so the prior instruction incorrectly gets the newly written wrong value. If WAR

hazards are detected the scoreboard will; stall the completing instruction.

The scoreboard holds the status of instructions, registers and functional units (FU’s):

• 1. Instruction status: the instruction status basically indicates in which part

of the instruction life-cycle it is in (see 4.7).

• 2. Functional unit status: this basically indicates the state of the processing

element. There are nine fields for a processing element.

(1) Busy: indicates whether a unit is busy or not

(2) Op: The operation to be performed e.g. Mult, Div, Add etc.

(3) Fi: Destination register of the processing element

(4) Fj, Fk: Source registers of the processing elements

(5) Qj, Qk: The Functional units which will produce the data of the source

registers Fj, Fk

(6) Rj,Rk: Flags indicating the status of Fj, Fk e.g ”YES” means the input

operand is ready, ”NO” is not yet written. The flags will be set to ”NO” after

the operands are read.

• 3. Register result status: Indicates which processing element will write a

register, if an active instruction has the register as destination. The field is set

to blank if there are no pending instructions that will write the register.

59



Based on its own data structure, the scoreboard controls the instruction progression

from one step to the next by communicating with the functional units. To avoid

structural hazards due to the limited number communication busses, the scoreboard

must ensure that the number of functional units within the Read Operands, Execution

and Write result state do not exceed the number of busses available.

Example: scoreboard

�

LOAD F6 (34+)R2 // F6
<− mem[R2+34]
LOAD F2 (45+)R3 // F2
<− mem[R3+45]
MULT F0 F2 F4 // F0 <− F2 ∗ F4
SUBD F8 F6 F2 // F8 <− F6 ∗ F2
DIVD F10 F0 F6 // F10 <− F0 / F6
ADDD F6 F8 F2 // F6 <− F8 ∗ F2

�� �

34

LD 1

45

LD 2

R2R3

F6

SUBD

DIVD

F2

MUL

ADD

F4

F0F8

F10F6 

Figure 4.8: An example program with its accompanying data dependency graph. In
the data dependency graph ellipses indicate operations, rectangles indicate memory
or registers, and triangles indicate constants

We will demonstrate how scoreboarding works by means of an example which was

originally given in [30]. For the example we use the program given in figure 4.8 and

its accompanying data dependency graph. In this example we will assume that an

addition operation takes 2 clock cycles, multiplication and division both take 4 cycles.

We go through the execution of the example given in figure 4.8 step by step using

the scoreboard table given in figure 4.7. Figure 4.9 up to 4.13 give the state of the

scoreboard for each clock cycle.
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Instruction Status Register Status

CLOCK 1
Instruction Issue Read Operands Execution complete Write Result Register FU

LOAD F6 34+ R2 1 F0
LOAD F2 45+ R3 F2
MULT F0 F2 F4 F4
SUBD F8 F6 F2 F6 INTEGER
DIVD F10 F0 F6 F8
ADDD F6 F8 F2 F10

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER YES LOAD F6 R2 YES

MULT1 NO
MULT 2 NO

ADD NO
DIVIDE NO

Functional Unit Status

Instruction Status Register Status

CLOCK 1

CLOCK 2
Instruction Issue Read Operands Execution complete Write Result Register FU

LOAD F6 34+ R2 1 2 F0
LOAD F2 45+ R3 F2
MULT F0 F2 F4 F4
SUBD F8 F6 F2 F6 INTEGER
DIVD F10 F0 F6 F8
ADDD F6 F8 F2 F10

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER YES LOAD F6 R2 YES

MULT1 NO
MULT 2 NO

ADD NO
DIVIDE NO

CLOCK 2

CLOCK 3

Functional Unit Status

Instruction Status Register Status
Instruction Issue Read Operands Execution complete Write Result Register FU

LOAD F6 34+ R2 1 2 3 F0
LOAD F2 45+ R3 F2
MULT F0 F2 F4 F4
SUBD F8 F6 F2 F6 INTEGER
DIVD F10 F0 F6 F8
ADDD F6 F8 F2 F10

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER YES LOAD F6 R2 YES

MULT1 NO
MULT 2 NO

ADD NO
DIVIDE NO

Functional Unit Status

Instruction Status Register Status

CLOCK 3

CLOCK 4
Instruction Issue Read Operands Execution complete Write Result Register FU

LOAD F6 34+ R2 1 2 3 4 F0
LOAD F2 45+ R3 F2
MULT F0 F2 F4 F4
SUBD F8 F6 F2 F6 INTEGER
DIVD F10 F0 F6 F8
ADDD F6 F8 F2 F10

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER YES LOAD F6 R2 YES

MULT1 NO
MULT 2 NO

ADD NO
DIVIDE NO

Functional Unit Status

CLOCK 4

Figure 4.9: Scoreboard clock 1 to 4
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Instruction Status Register Status

CLOCK 5
Instruction Issue Read Operands Execution complete Write Result Register FU

LOAD F6 34+ R2 1 2 3 4 F0
LOAD F2 45+ R3 5 F2 INTEGER
MULT F0 F2 F4 F4
SUBD F8 F6 F2 F6
DIVD F10 F0 F6 F8
ADDD F6 F8 F2 F10

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER YES LOAD F2 R3 YES

MULT1 NO
MULT 2 NO

ADD NO
DIVIDE NO

Instruction Status Register Status

CLOCK 6

CLOCK 5

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0 MULT1
LOAD F2 45+ R3 5 6 F2 INTEGER
MULT F0 F2 F4 6 F4
SUBD F8 F6 F2 F6
DIVD F10 F0 F6 F8
ADDD F6 F8 F2 F10

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER YES LOAD F2 R3 YES

MULT1 YES MULT F0 F2 F4 INTEGER NO YES
MULT 2 NO

ADD NO
DIVIDE NO

Instruction Status Register Status

CLOCK 7

CLOCK 6

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0 MULT1
LOAD F2 45+ R3 5 6 7 F2 INTEGER
MULT F0 F2 F4 6 F4
SUBD F8 F6 F2 7 F6
DIVD F10 F0 F6 F8 ADD
ADDD F6 F8 F2 F10

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER YES LOAD F2 R3 YES

MULT1 YES MULT F0 F2 F4 INTEGER NO YES
MULT 2 NO

ADD YES SUBD F8 F6 F2 INTEGER YES NO
DIVIDE NO

Instruction Status Register Status

CLOCK 8

CLOCK 7

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0 MULT1
LOAD F2 45+ R3 5 6 7 8 F2 INTEGER
MULT F0 F2 F4 6 F4
SUBD F8 F6 F2 7 F6
DIVD F10 F0 F6 8 F8 ADD
ADDD F6 F8 F2 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER YES LOAD F2 R3 YES

MULT1 YES MULT F0 F2 F4 YES YES
MULT 2 NO

ADD YES SUBD F8 F6 F2 YES YES
DIVIDE YES DIV F10 F0 F6 MULT1 NO YES

CLOCK 8

Functional Unit Status

Figure 4.10: Scoreboard clock 5 to 8
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Instruction Status Register Status

CLOCK 9
Instruction Issue Read Operands Execution complete Write Result Register FU

LOAD F6 34+ R2 1 2 3 4 F0 MULT1
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 CLOCK 4 F4
SUBD F8 F6 F2 7 9 CLOCK 2 F6
DIVD F10 F0 F6 8 F8 ADD
ADDD F6 F8 F2 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 YES MULT F0 F2 F4 YES YES
MULT 2 NO

ADD YES SUBD F8 F6 F2 YES YES
DIVIDE YES DIV F10 F0 F6 MULT1 NO YES

Instruction Status Register Status

CLOCK 10

CLOCK 9

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0 MULT1
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 CLOCK 3 F4
SUBD F8 F6 F2 7 9 CLOCK 1 F6
DIVD F10 F0 F6 8 F8 ADD
ADDD F6 F8 F2 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 YES MULT F0 F2 F4 YES YES
MULT 2 NO

ADD YES SUBD F8 F6 F2 YES YES
DIVIDE YES DIV F10 F0 F6 MULT1 NO YES

Instruction Status Register Status

CLOCK 11

CLOCK 10

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0 MULT1
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 CLOCK 2 F4
SUBD F8 F6 F2 7 9 11 F6
DIVD F10 F0 F6 8 F8 ADD
ADDD F6 F8 F2 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 YES MULT F0 F2 F4 YES YES
MULT 2 NO

ADD YES SUBD F8 F6 F2 YES YES
DIVIDE YES DIV F10 F0 F6 MULT1 NO YES

Instruction Status Register Status

CLOCK 12

CLOCK 11

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0 MULT1
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 CLOCK 1 F4
SUBD F8 F6 F2 7 9 11 12 F6
DIVD F10 F0 F6 8 F8 ADD
ADDD F6 F8 F2 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 YES MULT F0 F2 F4 YES YES
MULT 2 NO

ADD YES SUBD F8 F6 F2 YES YES
DIVIDE YES DIV F10 F0 F6 MULT1 NO YES

CLOCK 12

Functional Unit Status

Figure 4.11: Scoreboard clock 9 to 12
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Instruction Status Register Status

CLOCK 13
Instruction Issue Read Operands Execution complete Write Result Register FU

LOAD F6 34+ R2 1 2 3 4 F0 MULT1
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 13 F4
SUBD F8 F6 F2 7 9 11 12 F6 ADD
DIVD F10 F0 F6 8 F8
ADDD F6 F8 F2 13 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 YES MULT F0 F2 F4 YES YES
MULT 2 NO

ADD YES ADD F6 F8 F2 YES YES
DIVIDE YES DIV F10 F0 F6 MULT1 NO YES

Instruction Status Register Status

CLOCK 14

CLOCK 13

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0 MULT1
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 13 14 F4
SUBD F8 F6 F2 7 9 11 12 F6 ADD
DIVD F10 F0 F6 8 F8
ADDD F6 F8 F2 13 14 CLOCK 2 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 YES MULT F0 F2 F4 YES YES
MULT 2 NO

ADD YES ADD F6 F8 F2 YES YES
DIVIDE YES DIV F10 F0 F6 MULT1 NO YES

Instruction Status Register Status

CLOCK 15

CLOCK 14

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 13 14 F4
SUBD F8 F6 F2 7 9 11 12 F6 ADD
DIVD F10 F0 F6 8 15 CLOCK 4 F8
ADDD F6 F8 F2 13 14 CLOCK 1 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 NO
MULT 2 NO

ADD YES ADD F6 F8 F2 YES YES
DIVIDE YES DIV F10 F0 F6 YES YES

Instruction Status Register Status

CLOCK 16

CLOCK 15

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 13 14 F4
SUBD F8 F6 F2 7 9 11 12 F6 ADD
DIVD F10 F0 F6 8 15 CLOCK 3 F8
ADDD F6 F8 F2 13 14 16 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 NO
MULT 2 NO

ADD YES ADD F6 F8 F2 YES YES
DIVIDE YES DIV F10 F0 F6 YES YES

CLOCK 16

Functional Unit Status

Figure 4.12: Scoreboard clock 13 to 16
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Instruction Status Register Status

CLOCK 17
Instruction Issue Read Operands Execution complete Write Result Register FU

LOAD F6 34+ R2 1 2 3 4 F0
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 13 14 F4
SUBD F8 F6 F2 7 9 11 12 F6 ADD
DIVD F10 F0 F6 8 15 CLOCK 2 F8
ADDD F6 F8 F2 13 14 16 17 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 NO
MULT 2 NO

ADD YES ADD F6 F8 F2 YES YES
DIVIDE YES DIV F10 F0 F6 YES YES

Instruction Status Register Status

CLOCK 18

CLOCK 17

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 13 14 F4
SUBD F8 F6 F2 7 9 11 12 F6
DIVD F10 F0 F6 8 15 CLOCK 1 F8
ADDD F6 F8 F2 13 14 16 17 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 NO
MULT 2 NO

ADD NO
DIVIDE YES DIV F10 F0 F6 YES YES

Instruction Status Register Status

CLOCK 19

CLOCK 18

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 13 14 F4
SUBD F8 F6 F2 7 9 11 12 F6
DIVD F10 F0 F6 8 15 19 F8
ADDD F6 F8 F2 13 14 16 17 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 NO
MULT 2 NO

ADD NO
DIVIDE YES DIV F10 F0 F6 YES YES

Instruction Status Register Status

CLOCK 20

CLOCK 19

Functional Unit Status

Instruction Issue Read Operands Execution complete Write Result Register FU
LOAD F6 34+ R2 1 2 3 4 F0
LOAD F2 45+ R3 5 6 7 8 F2
MULT F0 F2 F4 6 9 13 14 F4
SUBD F8 F6 F2 7 9 11 12 F6
DIVD F10 F0 F6 8 15 19 20 F8
ADDD F6 F8 F2 13 14 16 17 F10 DIVIDE

F12
F14

Name Busy Operation Fi (dest) Fj (source) Fk (source) Qj Qk Rj Rk
INTEGER NO

MULT1 NO
MULT 2 NO

ADD NO
DIVIDE YES DIV F10 F0 F6 YES YES

CLOCK 20

Functional Unit Status

Figure 4.13: Scoreboard clock 17 to 20
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In clock 1 the LOAD F6 (34+)R2 instructions is issued. We can see in the instruction

status field (see figure 4.9) of the scoreboard that the instructions was issued, in the

Functional Unit status we see that the state of the INTEGER FU is set to Busy

(Note: the INTEGER FU handles memory operations in this architecture example);

that the operation to be performed is a LOAD operation; the destination register of

the result is F6 and that the data of the source register is available hence the YES

tag in the Rk field. Finally, the register status of register F6 indicates that it will be

written by the INTEGER FU. In clock 2 the operands (i.e. the contents of the R2

register) are read, reading the operands of an instruction takes 1 clock cycle. The

execution phase is in clock 3. In clock 4 the write results phase takes place, and the

content of the register F6 is updated with the result of the operation. This also takes

one clock cycle hence the INTEGER FU is free in clock 5. The second load instruction

in the instruction stream was not issued by the scoreboard because the INTEGER

FU was occupied by the first LOAD instruction. The MULT F0 F2 F4 instruction

was also not issued by the scoreboard because one of its source operands F2 was not

yet written. Hence the instruction was stalled until the operand is available. (Note:

that exchanging the first two LOAD instructions would have improved the program).

This is however, not possible in the scoreboarding approach and hence a badly written

program will result in bad execution performance.

In clock cycle 6 the read operands of the second LOAD instruction takes place together

with the issuing of the MULT instruction. In the processing element status field of

the scoreboard we see that the MULT1 FU is occupied with a MULT operation and

that the second source operand F2 is not yet available, hence the ”NO” in the Rj

field. Since not all operands are available, the instruction can not enter the read

operands phase. The scoreboard will keep on issuing other instructions if their FU

and the destination register of the instruction are available.

The reader should note that the scoreboard scheduler avoids data hazards by either

stalling the instruction after the issue stage or stalling the write result stage. If a

structural hazard exists which is the situation that will occur when an instruction

requires a FU that is still occupied with another instruction; the second instruction

requiring the FU will not be issued.
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A scoreboard scheduler uses the amount of ILP to minimize the number of stalls

arising from the program’s true data dependencies. By eliminating those stalls, the

scoreboard is limited by the following factors:

• The amount of parallelism available within the program; This determines the

number independent instructions that can be found to execute. If each instruc-

tion depends on its predecessor, no dynamic scheduling scheme can reduce the

stalls.

• The set of instructions examined as candidates for potential execution is called a

window. The number of instructions in the window; determine how far ahead in

the pipeline the scheduler can look for independent instructions. It is assumed

that the size of the window (and hence the scoreboard) does not extend beyond

a branch. Hence the window (and the scoreboard) always contain straight line

code from a single basic block.

• The number and types of functional units; this determines the probability of

structural hazards, which can increase when dynamic scheduling is used.

• The presence of anti-dependencies and output dependencies which lead to WAR

and RAW hazards

Discussion

The scoreboard will allow instructions to execute in parallel when there are no data

dependencies amongst them and there are no structural hazards. In other words

sufficient busses for the data communication and sufficient FUs are available. Since

each instruction statically allocates the output register and there is only one physical

register for each output, and the scoreboard stalls instructions if their destination

registers are occupied. The output registers become a bottleneck and hence the

amount of ILP available within program loops is limited.

This problem was solved in the Tomasulo scheduler which is described in the next

section. The Tomasulo scheduler uses a register renaming scheme and the concept
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of reservations stations. Reservation stations behave as if they are virtual result

registers and together with the register renaming scheme there would be more virtual

result registers than that is actually used and hence less register conflicts can exist.

The register renaming scheme insures that the scheduler can dynamically allocate the

result registers instead of the static allocation used within the scoreboard scheduler,

hence structural hazards due to register conflicts are avoided. This is the key concept

behind the Tomasulo scheduler.

The reader should also note that scoreboarding preserves the instruction order. The

first two load instructions are independent. As can be seen in the data dependency

graph shown in figure 4.8. Had we exchanged the execution order of the instructions

and let the second load instruction LOAD F2, (45+)R3 execute first, the third Mult

instruction would not have been stalled during the issue and read operands phase.

The scoreboard does not make use of the concept of result-forwarding, which is the

situation of forwarding the results as soon as they are available and hence they can

be out-of-order, it preserves program dependence by stalling a writing instruction if

the destination is still in use. Hence the results within the scoreboard scheduling

scheme are always in order. Finally we sum up by mentioning that the scoreboard

limits parallelism to basic blocks of code or single line code, it uses the amount of ILP

available within the code to minimize its pipeline stalls and a badly written piece of

code will result in bad performance.

4.3.3 Tomasulo scheduler

One of the most popular algorithms for out-of-order execution is the Tomasulo

scheduling algorithm. The Tomasulo algorithm was first published in 1967 by R.M.Tomasulo

[22] [21]. It is one of the most competitive scheduling algorithms and is currently used

in the Intel Pentium P3, P4 and the IA-32 architectures [42].

As an example we use the basic structure of a MIPS floating point unit which uses a

Tomasulo scheduler (see figure 4.16). The structure contains three Functional units;

the memory unit, FP adders and FP multipliers. The FP adders and FP multipliers

are connected to reservation stations which supply the operands and to the Common
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Figure 4.14: Data path of a MIPS floating-point unit with a Tomasulo Scheduler

Data Bus (CDB) for writing their computation results. The memory unit is connected

to load and store buffers for loading and storing data from memory. The address unit

is responsible for calculating the memory addresses needed by the memory unit. The

FP registers hold the registers used within floating point instructions and the in-

struction queue holds the instructions issued by the instruction unit. The instruction

queue issues the instructions in fifo order, hence instructions within Tomasulo are

issued in-order. Unlike the scoreboard, instructions go through three phases, Issue,
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Execute, and Write result. There is no read operands phase, since the Tomasulo

scheduler issues the instructions to reservation stations if the reservation station or

load store buffers are free3, depending on whether the instruction was a floating point

instruction or load store instruction. The reservation stations include the operation

to be performed as well as the information used for resolving the hazards. The load

buffers have three functions: hold the components of the effective address until it

is computed, track outstanding loads that are waiting on memory, and hold the re-

sults of completed loads that are waiting for the CDB. Store buffers also have three

functions: hold the components of the effective address until it is computed, hold

the destination memory addresses of outstanding stores that are waiting for the data

value to store, and hold the address of the value to store until the memory unit is

available. All the results from either the FP units or the load unit are published on

the CDB bus, which goes to the FP registers as well as to the reservation stations and

store buffers. The FP adders and multipliers perform the floating point addition/-

subtraction and multiplication/division. The exact steps an instruction goes through

is as follows:

• Issue: Get the next instruction from the head of the instruction queue. In-

structions are issued in fifo order and hence correct dataflow is maintained. If

there is a free matching reservation station the instruction is issued to it with

the operand values if they are available in the registers. The operand values are

thus copied to the reservation stations. If there is no free reservation station,

then there is a structural hazard and the instruction is stalled until a buffer

is free or the reservation station is freed. If the operands are not in registers

then keep track of the processing elements that will produce them. This step

renames registers, eliminating WAW and WAR hazards.

• Execute: If one or more operands are not available monitor the Common Data

Bus while waiting for it to be computed. When an operand is available it will be

3Unlike the scoreboard which will only issue an instruction if the FU is available and the result
destination register is not in use.
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placed in the corresponding reservation station. When all operands are avail-

able the operation can be executed at the corresponding processing element.

By delaying the instruction execution until all operands are available, RAW

hazards are avoided. Notice that several instructions could become ready in

the same clock cycle for the same processing element. Although independent

processing elements could begin execution in the same clock cycle, if more than

one instruction is ready for the same processing element, the unit will have to

choose among them. For the floating point reservation stations this choice may

be made arbitrarily. Loads and stores, however, present additional complica-

tions since they require a two step execution phase. First the effective address

has to be calculated when the base address is available, then the calculated

effective address will be placed in the load or store buffer. Loads in the load

buffer execute as soon as the memory unit is available. Stores in the store

buffer wait for the value to be stored before being sent to the memory unit.

Loads and stores are maintained in program-order through the effective address

calculation. This will prevent hazards through memory.

• Write result: When the result is a available, write it on the Central Data

Bus (CDB) and from there into the registers and into any reservation stations

(including store buffers) waiting for the result. Stores also write data to memory

during this step: when both the address and data value are available, they are

sent to the memory unit and the store operation completes.

Register renaming [40][30] In the Tomasulo scheduling scheme, register renaming

is provided by the reservation stations. The reservation stations buffer the operands

of instructions waiting to be issued. The idea is that a reservation station fetches and

buffers the operands as soon as they are available and hence eliminating the need to

get the operand from a register. Also, pending instructions designate the reservation

stations that will provide their input operands. Finally, when successive writes to a

register overlap in execution only the last one is actually used to update the register.

As instructions are issued, the register specifiers for pending operands are renamed

to the names of the reservation station holding those operands. Since there can be
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more reservation stations than real registers, this technique can eliminate hazards

arising from name dependencies that could have not been eliminated statically by a

compiler.

Figure 4.15: The state of the reservation stations when all instructions are issued and
the first instruction has written its result to the CDB

For the Tomasulo scheduler we use the same terminology as in the scoreboard schedul-

ing scheme. Each reservation station has seven fields (see figure 4.15):

• Op: The operation to perform on source operands S1 and S2.

• Qj, Qk: The reservation stations that will produce the corresponding source

operand; a value of zero indicates that the source operand is already available

in Vj or Vk, or is unnecessary.

• Vj, Vk: The value of the source operands. Note that only one of the V fields

or the Q field is valid for each operand. For loads, the Vk field is used to hold

the offset field
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Figure 4.16: Structure of a processor core with a Tomasulo Scheduler in combination
with a reorder-buffer

• A: Used to hold information for the memory address calculation for load or

store. Initially, the immediate field of the instruction is stored here; after the

address calculation, the effective address is stored here.
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• Busy: Indicates that this reservation station and its accompanying processing

element are in use.

The register file has the field, Qi:

• Qi: The indication of the reservation station that contains the operation whose

result should be stored into this register. If the value of Qi is blank (or 0),

no currently active instruction is computing a result destined for this register,

meaning that the value is simply the register contents.

Appendix B provides the bookkeeping rules for the Tomasulo scheduling algorithm.

When an instruction is issued, the destination register has its Qi field set to the

number of the buffer or reservation station to which the instruction is issued. If the

operands are available in the registers, they are stored in the V fields. Otherwise,

the Q fields are set to indicate the reservation that will produce the values needed

as source operands. The instruction waits at the reservation station until both its

operands are available, which is indicated by zero in the Q field. The Q fields are

set to zero either when this instruction is issued, or when an instruction on which

this instruction depends completes and does its write back. When an instruction

has finished execution and the CDB is free, it can commence its write back. All the

buffers, and reservation stations whose value of Qj or Qk is the same as the completing

reservation station update their values from the CDB and mark the Q fields to indicate

that values have been received. Hence, the CDB can publish its results to multiple

reservation stations in a single clock cycle. When the waiting reservation stations

have their operands, they can all begin execution on the next clock cycle. Note that

after the issue stage instructions can enter execution out-of-order. Figure 4.16, is a

modified [21] Tomasulo architecture which contains a reorder buffer. By allowing the

results to be written out-of-order (out-of-order dispatch) in the Write Results phase

to a special reorder buffer, this then reorders the results. Results in the reorder buffer

can be forwarded, it can speed up instructions that are waiting on those results. The

net effect is that a higher ILP is obtained. According to [18] this scheme is used in the

UltraSparc processor series and it is used to compensate for slow FU’s. Nevertheless
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there are some constraints, namely that at most one instruction is completed per

clock cycle and that RAW dependencies are obeyed. Thus instruction dispatch must

still stall if the operands are not available or if the instructions compete for the CDB.

In the Tomasulo approach RAW hazards are avoided by executing an instruction only

when its operands are available. WAW and WAR hazards, which arise from name

dependencies, are eliminated by register renaming. Register renaming eliminates

these hazards by renaming all destination registers, including registers with a pending

read or write of an earlier instruction, so that out-of-order write does not affect any

instructions that depend on an earlier value of an operand.

If we think of registers as names instead of locations, then we can write data to a

free register and store the name within a look up table. The contents of the register

can then be read using the name as an index within the lookup table. In this way we

basically allocate registers to names dynamically at run time and hence avoid stalling

instructions due to register conflicts.

Discusion

We have seen that out-of-order execution, out-of-order completion and register re-

naming are among the modifications added to the Tomasulo scheduler in order to

improve ILP. Even with these sophisticated scheduling mechanisms, we have to look

at other concepts such as task level parallelism or coarse grained parallelism, if more

parallelism is to be obtained from an algorithmic specification. Since the instruction

stream itself is the bottle neck.

A comparison between the dynamic scheduling architectures and models can be sum-

marized as follows. Both Tomasulo and scoreboard schedulers are used in superscaler

architectures which are considered to be Von Neumann type architectures. Von Neu-

mann type architectures suffer from the so called Von Neumann bottleneck. Their

architectures are controlled by a sequencer which executes the instruction stream.

Instructions are fine grained and the program counter points to the next instruction

to be executed. The instruction life cycle consists of fetching instructions, executing

them and writing the results back to either registers or memory. This is very short
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when compared to the instruction cycle of dataflow machines. In order to speedup

Von Neumann type of architectures the execution of instructions are pipelined as men-

tioned in [4.2.2] [4.3.2]and [4.3.3]. Theoretically if there are no hazards the speedup

up for a w deep pipelined architecture is w. Unfortunately hazards do occur and

they reduce the speedup. Some of the pipeline hazards can be solved (statically)

at compile time by aligning, reordering and inserting dummy nop instructions. Un-

fortunately this does not solve all control hazards. The scoreboard and Tomasulo

schedulers try to solve those hazards dynamically such as mentioned in 4.3.2 and

4.3.3. The differences between the scorebaording and Tomasulo is that scoreboarding

will allow instructions to run in parallel if there are no dependencies amongst them

and there are no structural hazards. Tomasulo on the other hand, tries to achieve

more ILP by distinguishing between true instruction dependencies and dependencies

due to compile time register allocation. The solution to register resource constraints

is register renaming and the solution to processing resource constraints is reserva-

tion stations. Both concepts are discussed in section 4.3.3. The data flow model of

execution does not suffer from false dependencies. Since there are no registers. The

operands of an instruction (node) travel through the edges of the data flow graph from

node to node. An instruction is considered executable when the processing element

implementing the instruction and operands of the instruction are available. Hence

the data flow model is hindered only by the true dependencies available within the

application. There is no restriction on the instruction granularity within the data

flow model although lessons learned from previous research suggest that instructions

with fine granularity lead to more overhead and an imbalance in the computation to

communication ratio.

Comparison

Despite the problems mentioned, the dataflow model of execution has attractive prop-

erties for high-throughput streaming applications and hence is a motivation for the

High2 dataflow architecture discussed in the upcoming chapters. We will show that

problems regarding the nature of the pure dataflow model of execution (such as men-

tioned in section 4.3.1) can be circumvented by an adaptation of the model.
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Table 4.1: Comparison
name Weak points Strong points

Scoreboard - Uses ILP to resolve hazards - Short instruction life cycle
- Instructions can only run in - Dynamically scheduled pipeline
parallel if there are no
dependencies amongst them and
there are no structural hazards
- Only single line of code or
basic blocks
- Von Neumann bottleneck
- Static register allocation
implies that bad register allocation
leads to bad execution performance

Tomasulo - Von Neumann bottleneck - Dynamically scheduled pipeline
- Uses register renaming to
resolve register name conflicts

Dataflow - Overhead due to matching unit - Asynchronous execution
- Efficient implementation of the of instructions. Instructions
matching unit requires complex are active as soon as their
multi-ported registerfile which is operands are available.
expensive - True instruction dependencies
- Bad single thread performance - Capable of exploiting true
- Long and inefficient instruction parallelism if available within
cycle the program
- For fine grained instructions - Capable of scheduling
the number of tokens waiting for non-manifest-loops
a match can be very large, which without loss of clock cycles
leads to large memories and long
latencies
- Due to the lack of locality
of reference it is difficult
to predict when a matching
token will arrive
- Handling of data structures is not
trivial and can lead to
deadlocks [35]

77



78



Chapter 5

High2 Data Flow Machine

This chapter discusses data flow machines as a possible solution for appli-

cations with non-manifest behavior such as those described in chapter 3.

The design of the High2 data flow machine (High2 DFM ), which is an ap-

plication specific dedicated processor capable of utilizing the parallelism

inherent within an application, is provided. The High2 DFM was de-

signed with high-throughput streaming applications in mind, this means

that throughput is of major importance. We show that the DFM can

be tuned at design time to meet certain throughput requirements, this

is achieved by varying the number of processing elements available for

computing the (non-manifest) functions of the application. In the High2

DFM design we focus on providing solutions for the average case stream

processing load and at the same time maintain a high-throughput.

5.1 Introduction

Since in algorithms with non-manifest loops the latency depends on the input data,

an architecture which utilizes a static scheduling scheme will have a number of idle

processing cycles. These idle cycles are mainly due to the fact that the scheduler

plans for the worst case processing latency since it has no prior knowledge of the

input data pattern. These idle cycles could be used to enhance the performance of
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the architecture in many ways. For example: the processor can disable it’s processing

elements during idle cycles and hence save energy or free up the processing elements

during the idle cycles and make them available for new computations, this effectively

increases the processing capacity of the system. By increasing the processing capacity,

the system can accept a data stream with a higher throughput or higher processing

load. This chapter examines the possibilities of utilizing those idle processing cycles

available within non-manifest loops. The solution provided is based on dynamically

scheduling the processing elements at run time and freeing those elements as soon as

the computation has completed. In section 5.2 a design feasibility experiment, for the

simple case of a single non-manifest node, is provided and in section 5.3 we explore

the general case for an application with multiple manifest and non-manifest nodes.

5.2 The Simple model

We have seen in chapter 4 section 4.3.2 that the scoreboard scheduling mechanism is-

sues instructions in-order and that instructions enter the execution phase out-of-order

if there are no dependencies, hence a better ILP can be obtained depending on how ef-

ficient the program was written. This was improved upon in the Tomasulo scheduling

mechanism described in section 4.3.3. Instructions are still issued in-order but unlike

the scoreboard, instructions can also enter the execution phase out-of-order even in

the presence of dependencies. The WAR and RAW hazards that can occur, were

solved in the Tomasulo scheduler by introducing the concept of reservation stations

and register renaming. The Tomasulo scheduler is more flexible than the scoreboard

and achieves better ILP at the cost of more control hardware overhead. In the exper-

iment described in this section, dynamic scheduling on coarse-grained non-manifest

data dependent functions is used in combination with out-of order execution and a

reorder buffer. Unlike the Tomasulo or Scoreboard (which try to parallelize the in-

structions, determine their operand-data flow at run time, and solve the hazards) in

our experiment we only focus on maximizing the parallelism of independent compu-

tations on a data stream and at the same time determine the amount of processing

elements needed in order to meet a certain stream processing-load.

80



Algorithm

Input Stream Output Stream

PE 1

PE 2

PE n

Input Stream Output Stream

Input Buffer Output Buffer

A
p
p
li
c
a
ti
o
n

Im
p
le
m
e
n
ta
ti
o
n

Figure 5.1: Simple model of an application with non-manifest loops and its proposed
hardware architecture

The simple-application model and the proposed hardware implementation model are

shown in figure 5.1. In the simple-application model the application is one single non-

manifest algorithm which has to operate on a high-throughput stream of independent

operands. Since the application has to process an input stream that has a time

delay between two operands that is shorter than the computation of one single data

sample, having only one processing element in the hardware implementation is not

enough (since the input workload is larger than the computational capacity). In order

to solve this problem we propose a hardware architecture with multiple processing

elements. The processing elements will run in parallel, operating on independent

stream operands. In order to improve the performance of the hardware architecture

even further we propose an out-of-order execution mechanism. This mechanism will

ensure that the processing elements are freed-up as soon as possible and hence are

ready for a new computation. The proposed architectural model (see figure 5.1) for

the application consists the following elements:
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• Input Buffer: the input buffer will store the incoming stream samples when

they cannot be dispatched to a processing element. Stream samples will be

stored in the input buffer if the processing elements within the architecture are

occupied with an earlier computation.

• Processing Elements: the processing elements are dedicated hardware im-

plementations of the non-manifest algorithm. All processing elements, within

this architecture, have the same implementation. Since the algorithm is non-

manifest, the latencies of individual computations may be different, and hence

computations can over take each other in execution thus providing an out-of-

order output stream.

• Output Buffer: if the application dictates that input stream and the output

stream are synchronous, the architecture must somehow reorder the output

stream produced by the processing elements. This is implemented by a reorder

buffer.

• Controller: the controller of the architecture basically dispatches the input

stream samples to the processing elements at run-time, hence forming a dynamic

scheduler. It basically controls the flow of the stream and performs the needed

run-time control calculations which involve buffer locations and activation of

the processing elements.

In order to implement such an architecture we need to calculate the input buffer-

size, number of processing elements, output buffer-size, implement the scheduling

mechanism within the controller and determine the system latency. In the next

sections, the process of designing such a system is described.

5.2.1 Design

Take the Gcd described in chapter 3 as an example(see figure 5.2). The Gcd is a

typical example of an analytical non-manifest loop. The function is analytic as it

only has one correct answer and is also non-manifest because the number of loop
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clock cycles is dependant on the values of x, and y, which are not known at compile

time. From chapter 3 we know that the algorithm can consume between Cres = 3

and Cres ∗ 23 = 69 clock cycles depending on the input operands.

�

1 int gcd ( int x , int y ){
2 int g ;
3
4 g = y ;
5 while ( x > 0 ){
6 g = x ;
7 x = y % x ;
8 y = g ;
9 }

10 return ( g ) ;
11 }

�� �

Figure 5.2: gcd algorithm

The Gcd function has to operate in a manifest environment on a continues stream of

16 bit input values (xj, yj), (xj+1, yj+1), . . . each execution Gcd (xj, yj) would require

a computational load between Cres and 23×Cres. In which Cres is the number of clock

cycles required for one iteration of the Gcd algorithm, and is estimated, at design

time, for the target implementation (Cres = 3 in this case). In case of static scheduling

or starting from the worst case computation load, the number of processing elements

must be based on a maximum load per input operand of 23 × Cres clock cycles.

In practice the average load per operand will be much lower, so a large number of

execution cycles are wasted. Assume, the workload generated by the input operands

does not exceed a certain value B over a sliding window i, i + 1, . . . , i + m − 1 of m

operands. We wish to know:

• The number of processing elements needed

• The maximum latency

In the following sections we show that such a system is feasible using dynamic schedul-

ing. But first we give the exact problem formulation.
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Problem formulation

Given an input data stream with known maximum workload bound B on a stream

window of size m, hence WL(t,m) ≤ B for all t with WL(t,m) =
∑i+m−1

j=i CLA(vj)

see definition 19 on page 20. And given a data dependent non-manifest algorithm

A with known computational workload bounds CLminA
and CLmaxA

(See chapters 2,

3). Devise a real time hardware scheduler that will meet the workload WL(t,m) of

the system, produce an output that is synchronous with the input with a latency of

at most Latmax time units, and determine the number of processing elements Nres

needed. We may expect that given B there exist a minimal value for Latmax, moreover

a larger number of processing elements could lead to a lower value of Latmax.

Proposed Solution

Processor Architecture: Since the exact amount of computing cycles needed,

CLA(vj) which is bounded by 0 ≤ CLminA
≤ CLA(vj) ≤ CLmaxA

, is not known

in advance but is known after the computation of the value vj has finished, we use

the following strategy: Allocate the earliest non calculated value vj to the first free

processing element. If no processing elements are free the value vj will have to wait

in a input buffer until a processing element becomes free. The input buffer handles

the input values in a FIFO manner and hence there is no starvation possible. This

is similar to the in-order issue phase of the scoreboard, the only difference is that we

do not issue instructions but we issue the operands of the functions to the processing

elements. To avoid waiting and latency build-up, the design must ensure that there

are sufficient processing elements to handle the work load. An architectural solution

for this strategy is given in figure 5.3.

The system works as follows: input operands are allocated to the first free processing

element (all processing elements implement the same functionality). If non of the

processing elements PE1, . . . , PEn is free, the operand will be placed in a data-queue

and its accompanying time of arrival is placed in the time-queue. The time-of arrival

is needed later in the address selection and calculation unit to calculate the output

operand position within the reorder buffer. Since execution of a computation has a
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Figure 5.3: The hardware model of the scheduler, the controller and all control signals
are omitted from the figure for simplicity reasons

variable length within the interval CLmin, . . . ,CLmax, some computations might pro-

duce their output at an earlier stage than their predecessor computations. When this

occurs, the produced output stream is out-of-order. In order to ensure a synchronous

system, the latency of each single computation must be the same. Note: compu-

tations are independent. The system ensures that all computations have the same

latency by delaying the output result. The actual delay is the difference between

latency and the actual time needed for the computation (delayj = Lat−CL(vj) ∀j)

and Lat ≥ CLmax. This is implemented in the system by means of a reorder buffer

and the address selection unit. The reorder buffer has a length Lat which is equal to

the latency of the system. The address selection unit computes the position of the
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output operand within the reorder buffer and writes it to that address. The address

selection unit knows the CL(vj) by subtracting the finish time of a computation from

its start time which was stored in the system at the arrival of the operands. The

newly produced result is placed in the reorder buffer at this address. Finally the

reorder buffer positions are shifted, one place on each clock, and the value of reorder

buffer at position zero will become the output of the system, which forms the output

stream.

Where Lat is the latency of the system. Tcurrent is the time an output is produced by

a processing element and Tstart is the time of arrival of the input operand. Because

the processing elements are working in parallel, multiple outputs can be produced in

the same clock-cycle. All these outputs have to be written to the reorder buffer. Once

all outputs have been written to the reorder buffer, all positions of the buffer will shift

one place, Address[lat − 1] → Address[lat − 2] . . . → Address[−1] → Address[0],

hence the data coming out of the least significant address Address[0] is the reordered

output data stream.

Design Flow: In order to design such a system we need the following parameters:

1) The latency of the system Lat

2) Number of processing elements Nres

3) Buffer sizes

It turned out not to be possible to determine all the design parameters analytically.

Only a bound of the latency could be devised. In order to obtain all the design

parameters, a special cycle count simulator was developed. This simulator requires

as input the workload bound B of the input stream, the streaming window size m,

the number of processing elements Nres of the architecture, the maximum workload

generated by a single input operand CLmax and provides the latency Lat and the

buffer sizes of the system.

The latency results of the simulator are then verified against the analytical latency

solution of theorem 5.2.6.
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5.2.2 Design Parameters

We simplify the model used in figure 5.1 as follows (see figure 5.4):

Figure 5.4: The flow of data

The input operands (tokens) vt are identified by their arrival time t. Hence, each

operand vt is uniquely identified by t and represents a workload CL(t) cycles. Note:

CL(vj),CL(t) are different functions which both produce the workload. For execution

Nres processing elements are available. Each processing element uses one cycle per

time unit. An operand t will enter the system at time t and either go into the buffer

or to a processing element. If it was stored in the buffer it will eventually go to a

processing element. The operands start execution in the order in which they arrive.

The workload entering the system in an interval of length m between t and t + m− 1

(bounds included) is defined by:

WL(t,m) =
t+m−1∑

i=t

CL(i) (5.2.1)

Let an operand t be released from the buffer at tb, then its first execution cycle is at

tb and the operand is not in the buffer at tb. The period the operand resides in the

buffer is expressed by del(t) and is tb − t. So the first execution cycle of operand t

is at t + del(t). The buffered workload BWL(t) stored in the buffer at time t is the
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Figure 5.5: The definitions

sum of the workloads associated to the operands stored in the buffer, i.e.

BWL(t) =
∑

i≤t<t+del(i)

CL(i) (5.2.2)

The workload in progress WIP (t) at time t is the sum of the cycles that still have to

be processed at time t of the operands that are being processed (by the processing

elements) at time t. Hence WIP (t) is the unprocessed workload within the processing

elements at time t. So the contribution of an operand t1 that starts executing at t2, to

the workload in progress WIP (t2) is CL(t1) and its contribution at t2+1 is CL(t1)−1.

The latency lat(t) of an operand t is the time the operand resides in the buffer plus

the time that was needed for execution. Hence

lat(t) = del(t) + CL(t) (5.2.3)

System parameters

We consider a system in which the workload offered to the system for any interval m

is at most B, so WL(t,m) ≤ B. Moreover we only consider systems that are feasible,

i.e. systems which can be built from a finite number of components and have a finite
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latency, provided the preliminary constraints are satisfied. Clearly, a system to which

more workload can be offered than can be processed is not feasible. Processing can

be postponed, but not until infinity. Therefore:

Theorem 5.2.1 (Feasible systems). A system in which B > m.Nres is not feasible.

Proof. Divide time into blocks of m. For each block i, the workload WL(i.m, m) = B.

The workload that cannot be processed is stored in a buffer WB. The stored workload

at t is WB(t). So the stored workload at t = i.m is WB(i.m). Then the stored

workload at t = (i + i).m is WB(i.m) + B − Nres.m. And thus because B > m.Nres

holds for all i: WB((i + 1).m) > WB(i.m). Hence the system with these parameters

is not feasible.

So a requirement for a feasible system is that B ≤ m.Nres.

Moreover we assume CL(t) ≤ CLmax, which implies that CLmax must be chosen ≤ B.

Theorem 5.2.2 (Maximum number of Processing elements). The maximum number

of processing elements Nres needed regardless B is CLmax. If Nres ≥ CLmax, Latmax =

CLmax

Proof. If Nres = CLmax, the system can be scheduled statically and a simple cyclic

schedule of the successive input values over the Nres processing elements suffices. Viz.,

IN(i) is processed by processing element k = i mod Nres. Because CL(i) ≤ CLmax,

at t = i+CLmax the processing element k will have been released. Processing element

k will receive the next sample at t = i + Nres which is, because CLmax ≤ Nres, after

processing element k has been released from its previous task.

From the preceding cyclic schedule, it immediately follows that for each input sample

a processing element is available immediately. Hence the maximum latency equals

CLmax

Hence, we consider a system in which

∀t : WL(t,m) ≤ B , ∀t : CL(t) ≤ CLmax , B ≤ Nres.m , CLmax ≤ B

(5.2.4)
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Design constraints

In a design process there is usually a tradeoff between the number of processing

elements (Nres) and the latency of the system (Lat). Since a processing element can

be busy with a computation for at most CLmax time units and then it is free for reuse,

the maximum number of processing elements ever needed Nresmax ≤ CLmax.

In order to ensure that the system has more computational capacity than what is

needed the following must hold B ≤ m × Nres. Hence the minimum number of

processing elements is limited by Nres ≥ B
m

. This means that the following relation

holds:
B

m
≤ Nres ≤ CLmax (5.2.5)

Similarly if the system is unconstrained with respect to the number of processing

elements the latency of the system will be CLmax.

5.2.3 Theoretical calculation of the latency

In this section we obtain an upper bound for Latmax theoretically. In order to achieve

a working system with delay Latmax clock cycles, maxbuf as the maximum number

of buffers needed given B as a workload bound, CLmax as the maximum number of

clock cycles needed for a single computation, and the number of processing elements

Nres, the following theorem must hold.

Theorem 5.2.3.

Lat ≤ 1
Nres

.(B − CLmax − Nres.�B−CLmax

CLmax
� + (Nres − 1).(CLmax − 1)) + CLmax

(5.2.6)

Proof. First we consider the flow relations of the system:

Flow relations

In general not all cycles of the processing elements will be used. Therefore we define

the total number of idle cycles in a period starting at t1 up to and including t2 − 1,

as IC(t1, t2 − t1).
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Figure 5.6: The flow relations

From the flow of operands the following can be derived (see figure 5.6):

In the period t1, . . . , t2 − 1 a number of Nres.(t2 − t1) − IC(t1, t2 − t1) cycles are

executed.

These cycles satisfy:

• the workload associated with the operands in the buffer at t1,

• the workload in progress at t1, and

• the workload of the operands received by the system in the period t1, . . . , t2−1.

Minus

– the workload associated with the operands in the buffer at t2 and

– the workload in progress at t2.

So

Nres.(t2−t1)−IC(t1, t2−t1) = WL(t1, t2−t1)+BWL(t1)+WIP (t1)−BWL(t2)−WIP (t2)

(5.2.7)

For convenience we define:

K(t) = BWL(t) + WIP (t) (5.2.8)
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Then (5.2.7) becomes

Nres.(t2 − t1) − IC(t1, t2 − t1) = WL(t1, t2 − t1) + K(t1) − K(t2) (5.2.9)

The maximum latency

We wish to determine the maximum latency of a system as described before.

Recall (5.2.3):

∀t : lat(t) = del(t) + CL(t) (5.2.10)

and thus

MAX

t

lat(t) ≤ MAX

t

del(t) + MAX

t

CL(t) (5.2.11)

So we first determine the maximum value of del(t).

The delay of an operand

The delay of an operand t depends on the buffered workload BWL(t) and the work

in progress WIP (t), see figure 5.7. In each cycle at most Nres cycles are executed.

Figure 5.7: The flow of data

So an operand t starts executing just after the buffered workload at t and the workload

in progress at t minus the workload at t + del(t) has been executed. Clearly between
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t1 = t and t2 = t + del(t) are no idle cycles and all workload of the operands after t

is executed after t + del(t). So

WIP (t1) + BWL(t1) − WIP (t2) = Nres.(t2 − t1) (5.2.12)

The values of WIP (t1) and WIP (t2) are bounded by:

0 ≤ WIP (t1) ≤ Nres.CLmax and 0 ≤ WIP (t2) ≤ (Nres − 1).CLmax (5.2.13)

From (5.2.11) and (5.2.12) we observe that the maximum delay depends on the max-

imum value of the buffered workload BWL(t). Therefore we first calculate a bound

for BWL(t).

The maximum of the buffered workload BWL(t)

First we calculate a bound for BWL(t) for any value of t.

We assume at t < 0 the buffer is empty, no work is in progress and all cycles are idle

cycles.

As soon as at t ≥ 0 an operand with CL(t) > 0 is entering the system a process-

ing element unit gets occupied. But the remaining execution units are still idle. It

might take some time until all processing elements are occupied and the buffer starts

filling up. Hence there exists a tc, tc ≥ 0 such that IC(tc, 1) = 0 and IC(tc−1, 1) > 0.

If there is an idle cycle at t − 1, the buffer is empty and operand t − 1 will start

executing at t − 1. At t the buffer is still empty and operand t will also immediately

start executing at t. So, if IC(t− 1, 1) > 0, the buffer is empty and BWL(t− 1) = 0

and BWL(t) = 0 too.

However, the buffer might have been emptied at t − 1 and have occupied Nres − 2

processing elements, see figure 5.8. So it can happen that at t + 1 all processing

elements are used and operand t + 1 is directed to the buffer.

From the preceding follows that the work in progress at t is at most (Nres−1).(CLmax−
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Figure 5.8: WIP (t) if IC(t − 1, 1)= 0

1). I.e.:

IC(tc − 1, 1) > 0 =⇒ (BWL(tc − 1) = 0 ∧ BWL(tc) = 0)

(IC(tc, 1) = 0 ∧ IC(tc − 1, 1) > 0) =⇒ WIP (tc) ≤ (Nres − 1).(CLmax − 1)

(5.2.14)

and thus

(IC(tc, 1) > 0 ∧ IC(tc − 1, 1) = 0) =⇒ K(tc) ≤ (Nres − 1).(CLmax − 1) (5.2.15)

Yet, consider the workload at t.

From (5.2.9) we know:

K(t2) + Nres.(t2 − t1) − IC(t1, t2 − t1) = WL(t1, t2 − t1) + K(t1) (5.2.16)

Let tc − 1 be the last empty cycle before t, i.e. IC(tc, t − tc) = 0 ∧ IC(tc − 1, 1) > 0,
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then with t2 = t and t1 = tc, we obtain from (5.2.16)

K(t) + Nres.(t − tc) = WL(tc, t − tc) + K(tc) (5.2.17)

The period tc, . . . , t can be divided into a multiple of m and a remainder t − t′c, i.e

t = t′c + k.m with t − t′c < m. So

K(t) + Nres.(t − t′c + k.m) = WL(tc, t − t′c + k.m) + K(tc) (5.2.18)

or

K(t) + Nres.(t − t′c) + k.Nres.m = WL(tc, k.m) + WL(t′c, t − t′c) + K(tc) (5.2.19)

From (5.2.4) we know

∀t : WL(t,m) ≤ B and B ≤ Nres.m (5.2.20)

Hence

∀t : WL(t,m) ≤ Nres.m and thus ∀t : WL(t, k.m) ≤ k.Nres.m (5.2.21)

So from (5.2.19) we obtain

K(t) + Nres.(t − t′c) ≤ WL(t′c, t − t′c) + K(tc) (5.2.22)

and with (5.2.15)

K(t) + Nres.(t − t′c) ≤ WL(t′c, t − t′c) + (Nres − 1).(CLmax − 1) (5.2.23)

From (5.2.23) and WL(t′c, t − t′c) =
∑t−1

i=t′c
CL(i) we see that K(t) is maximal if

WL(t′c, t − t′c) = B and t − t′c is minimal (provided CLmax > Nres). So

K(t) ≤ B − Nres.� B

CLmax

� + (Nres − 1).(CLmax − 1) (5.2.24)
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or with (5.2.8)

BWL(t) ≤ B − Nres.� B

CLmax

� + (Nres − 1).(CLmax − 1) − WIP (t) (5.2.25)

So the maximal buffered workload is obtained after the last operand of a block of

� B
CLmax

� operands each with a workload CLmax. Careful analysis shows that the block

can be preceded with one operand in case CLmax does not divide B and B mod

CLmax < Nres.

Such a block is preceded and followed by empty operands (CL(t) = 0), such that
∑t+m−1

i=t CL(i) ≤ B is satisfied.

Figure 5.9: WIP (t) if IC(t − 1, 1)= 0

The delay

The maximal latency is determined by the delay of the last operand t1 in the block

that leads to the maximal buffered workload. Obviously the latency is maximal if

CL(t1) = CLmax. See figure 5.9.

From (5.2.12), i.e.

WIP (t1) + BWL(t1) − WIP (t2) = Nres.(t2 − t1) (5.2.26)

we know that the delay of the last operand t1 of the block depends a.o. on the
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buffered workload at t1. Formula (5.2.25), however, expresses the buffered workload

after the last operand of the block. The maximal buffered workload at t1 is found by

restricting the maximal workload over m operands to B − CLmax and then adding

the operand t1 with CL(t1) = CLmax. So the buffered workload at t1 satisfies:

BWL(t1) ≤ B − CLmax − Nres.�B − CLmax

CLmax

� + (Nres − 1).(CLmax − 1) − WIP (t1)

(5.2.27)

From (5.2.26) and (5.2.27) we obtain

Nres.(t2 − t1) ≤ B −CLmax −Nres.�B − CLmax

CLmax

�+ (Nres − 1).(CLmax − 1)−WIP (t2)

(5.2.28)

The unknown value is WIP (t2). From (5.2.13) we know 0 ≤ WIP (t2) ≤ (Nres −
1).CLmax, so

Nres.(t2 − t1) ≤ B − CLmax − Nres.�B − CLmax

CLmax

� + (Nres − 1).(CLmax − 1) (5.2.29)

And thus

del(t1) ≤ 1
Nres

.(B − CLmax − Nres.�B−CLmax

CLmax
� + (Nres − 1).(CLmax − 1))

Using the analytical results of theorem 5.2.6 designers of the system can obtain an

upper bound of the latency.

5.2.4 Parameter calculation by simulation

In order to check the results of the analytical calculations of theorem 5.2.6 a token-flow

simulator was built. Given the system parameters CLmax, workload bound B, number

of resources Nres and window length m, the simulator will generate a data stream

with workload WL(t,m) ≤ B and then simulate the system for a given number of

clock cycles. The final result is the maximum latency obtained during the simulation

run and the maximum buffer usage. Running the simulation for a couple of million

clock cycles under the specified workload conditions is not a guarantee for the finding
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the worst case latency or the buffers of the system, but is a practical enough solution.

If B > m × Nres the processing capacity is insufficient and the latency results of the

simulator will increase with the number of clock cycles simulated, hence the results

are not valid if B > m × Nres.

In order to gain an idea of the system behavior under various number of process-

ing elements and load conditions we simulated the system with fixed parameters

CLmax = 8, m = 4800, Cres = 1 and then varied the workload bound B from

[1 . . . (m×CLmax = 38400)] clock cycles, which is the maximum possible load within

that window and the number of processing elements Nres from [1 . . . 8] which is the

maximum number of needed processing elements for this system. The results shown

in figure 5.10 indicate that (for a fixed input workload bound B) increasing the num-

ber of processing elements reduces the latency, which was expected, and that for the

maximum number of processing elements Nres = 8 the latency is 8 clock cycles which

is confirmed by theorem 5.2.2. The system is capable of handling the workload as

long as B/m ≤ Nres if this is not the case the latency will go to infinity, as there is

more workload than computational capacity (i.e. for Nres = 6 the system is capable

of handling a maximum workload of 6 × 4800 = 28800 clock cycles).
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Figure 5.10: Simulation results of workload bound B v.s. obtained simulator latency
for various Nres, CLmax = 8, m = 4800, and 0 < B < m.Nres.

System design parameters such as the maximum latency are obtained from figure

5.10 (i.e. for a workload bound of B = 10000 and Nres = 3 the maximum latency

Latmax ≈ 2000). The simulation also confirms that for Nres = 8 the system can

handle the maximum input workload and at a latency of 8 clock cycles.
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Figure 5.11: Simulation results of workload bound B v.s. queue buffer-sizes for various
Nres, CLmax = 8, m = 4800, and 0 < B < m.Nres.

Figure 5.11 shows the workload bound versus the input buffer size in unit size of

the input operands (which are integers in this case) for various values of Nres. The

figure shows that maximum buffers are obtained when Nres = 4 and for Nres = 8 the

buffers are 0. This clarifies that if Nres = 8 = CLmax the latency of the system will

also be CLmax as there is no buffer build-up. The simulation results also show that if

B/m ≤ Nres and Nres is fixed the input workload appears to be linear with the buffer

usage.
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5.2.5 Comparison of the theoretical latency-bound and ob-

tained simulation results

The theoretical bound given in 5.2.6 can be considered approximately linear and can

be simplified as follows:

Lat ≤ 1

Nres

.(B − CLmax − Nres.�B − CLmax

CLmax

� + (Nres − 1).(CLmax − 1)) + CLmax

(5.2.30)

Note:

�B − CLmax

CLmax

� >
B − CLmax

CLmax

− 1 (5.2.31)

Replacing the l.h.s of equation 5.2.31 with the r.h.s in equation 5.2.30 results in:

Lat <
1

Nres

.(B −CLmax −Nres.(
B − CLmax

CLmax

− 1)+ (Nres − 1).(CLmax − 1))+ CLmax

(5.2.32)

Rewriting equation 5.2.32 results in

Lat < (CLmax−Nres)
CLmax.Nres

.B + ( 1
Nres

).(1 − 2.CLmax + Nres + 2.CLmax.Nres) (5.2.33)

Equation 5.2.33 has the form of the single line equation y = m.x+ c hence it is linear

in B.

Filling in Nres = 1 and CLmax = 8 in equation 5.2.33 results in Lat ≤ 7
8
.B + 0 and

for Nres = 2 and CLmax = 8 results in Lat ≤ 3
8
.B + 19

2
.

We know that if Nres = CLmax, the latency is CLmax. So for Nres = 8 the obtained

latency Lat should be 8. Unfortunately the bound gives with B = m.CLmax and

equation 5.2.30 Lat ≤ 14.125 (notice that Lat turned out to be independent of m in

this case).

This indicates that the bound gives higher results than what should be, this is also

confirmed by figure 5.12.
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Figure 5.12: Theoretical results versus simulation results for various Nres, CLmax = 8,
m = 4800, and 0 < B < m.Nres.

In the figure we see the simulator obtained latencies versus the calculated latencies

for equation 5.2.6. The figure indicates that the latency Lat is indeed linear with the

input workload and that the error made by the theoretical bound increases with Nres.

5.2.6 Design flow of simple model applications

The application, to be designed, is a single non-manifest function described in an

imperative language such as C. We assume a typical input stream for the simulator

is available. Typical implies that ”if the system can manage the input stream we are

satisfied”. The design of the processing elements is part of the design process. During

the design of the processing element a good impression on the number of clock cycles

needed to execute a particular line or block of source code, is obtained.
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Important design parameters are:

- Buffer size

- Number of processing elements

- The maximum latency Lat

- CLmax

Note: building a full simulator which will execute real application functions, and

its processing elements is not very useful in determining the parameters because of

simulation speed.

The design flow can commence as follows: The maximum workload bound B, for

different values of m and CLmax, is obtained from the typical input stream by a pro-

filing process. Various latencies, and buffer memories are then obtained by simulating

the system using the obtained parameters and iterating over different values of Nres.

Note: 1 ≤ Nres ≤ CLmax.

Example

We demonstrate the scheduling process by means of the Gcd example given in sec-

tion 5.2.1: The Gcd algorithm is to be implemented in a synchronous environment.

Synchronous means the time between of arrival of the input operand of the system

and the production of the accompanying output is constant. The algorithm has to

process the input samples on each clock cycle, we know from the specification of the

data input stream that it has a WL(t, 200) ≤ 600 clock cycles (hence B = 600), and

from profiling results of the algorithm we know that the CLmax is 69 clock cycles

(See table 5.1). Simulating those parameters using Nres = �600
200

� = 3 produces the

maximum latency Latmax = 256 and maximum buffer size of 70.

Note calculating the latency using the analytical bound given in equation 5.2.6 pro-

duces a latency of 284 clock cycles which is higher than the simulated results.
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Table 5.1: System design paremeters
Type range units

CLmax 69 CLKs
Latmax 256 CLKs

B 600 CLKs
m 200 CLKs

Nres 3 Processing Elements
input buffer size 70 CLKs

Simulation results

The simulator of the simple-model is a cycle count simulator. In other words execution

of the non-manifest operation is simulated by just decrementing a counter. The

counter is initialized by required number of clock cycles obtained from the input

stream. In the simulator input stream values represent clock cycles and not the actual

operands of the non-manifest function. In this way simulating the application is much

simpler and less time consuming. Figure 5.13 and 5.14 show pictures of simple model

simulator for the gcd-example. In 5.13 the simulator shows the obtained simulator

latency, theoretical bound latency and memory buffers by simulating the system on

a random input stream.

The workload bound B of the stream is configured to be below 600 clock cycles and

the input stream values do not exceed the value CLmax which is 69 clock cycles in

this case. The number of processing elements is chosen to be 3. Other parameters of

the simulator are the number of clock cycles to execute and the level of randomness.

The later allows us to simulate the system with random data around the configured

bound value B.
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Figure 5.13: Simulation of the system
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Figure 5.14: Simulation of the system
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In figure 5.14 simulation of the scheduling process can be seen. This allows us to mon-

itor the process of dispatching the operands (input stream values) to the processing

elements and to monitor the buffers of the system.

5.2.7 Hardware Implementation

In figure 5.3 a block model of the scheduler and the processing elements was presented.

The model consists mainly of the following parts:

• Input buffer (FIFO)

• Time queue (FIFO)

• Time counter (Time)

• Start time registers (start1 . . . startn)

• Processing Elements (PE1 . . . PEn)

• Address selection and Calculation Unit (ACU)

• Reorder Buffer (multi ported shift register)

System operation

Since the workload of the system is not constant, all processing elements may be

occupied at the moment an input value arrives. In that case the input value has to

wait in an input queue until a processing element becomes free. The input values are

delivered to the processing elements in order and if a processing element is available

at the time an input arrives at the system, the input is transmitted though the queue

into the processing element in the same clock cycle. So the input queue acts as a

FIFO that has the property that a operand can be accepted and released again in the

same clock cycle. Moreover many processing elements can be freed at the same clock

cycle and therefore the input queue must be able to release many tokens in the same

clock cycle. This might become a design bottleneck.
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Since the execution of an operation takes a variable time and because the tokens

are delivered to the execution unit in order, some computations might produce their

output earlier than preceding computations. In that case the output stream becomes

out of order. In order to ensure synchronism between the input and the output stream,

the output data of the processing elements are placed in a reorder buffer. The reorder

buffer delays the output value such that the time the input value is delayed in the

input queue plus the time that was needed for executing the input value plus the

time the resulting output stays in the output buffer is constant, viz. Lat . Clearly,

Lat is a constant and Lat ≥ Latmax. This reorder buffer can be modeled by a shift

register that shifts right the data one cell each clock cycle and of which all cells have

write access. The cells are enumerated from right to left starting with cell 0. Clearly,

data entered in cell k will be released by cell 0, k clock cycles later. Because the

output values leave the processing elements out of order, they need to be provided

with an identifier. For that, the inputs are provided with an identifier being the time

they arrive at the system. These identifiers are stored in a time queue parallel to

the input queue and are send to the start register of a processing element in parallel

with the data that is being send to the input of a processing element. At the moment

a processing element releases its output value, the original input value is already

Tcurrent − Tstart clock cycles in the system. In which Tcurrent is the current time (in

clock cycles) and Tstart is the identifier (time stamp) of the input value. Clearly, the

output value still has to be delayed Lat− (Tcurrent−Tstart) clock cycles by the reorder

buffer and therefore the output value is stored in cell Lat − (Tcurrent − Tstart) of the

reorder buffer.

Notice that similar to the communication bottleneck between the input queue and the

processing elements, there exist a communication bottleneck between the processing

elements and the reorder buffer. In worst case, all processing elements could complete

their computations during the same clock cycle and thus need to communicate their

data in the same clock cycle to the reorder buffer.

These two communication bottlenecks can only be solved in case the average pro-

cessing time and amount of processing hardware is large compared to the time and

hardware that is needed for communication. So in case of coarse grained parallelism.
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Architecture properties and shortcomings

Within a synchronous system the life cycle of the stream data samples has the fol-

lowing loop:

1) Waiting to be computed,

2) Dispatching data to Processing element,

3) In execution,

4) Write back of output data to reorder buffer,

5) Waiting (in shift register of reorder buffer) for output dispatch.

The model described in figure 5.3 immediately follows from this loop. However a

hardware implementation has a lot of redundant memory.

Notice that if the incoming data cannot be allocated to a processing element directly

(because all processing elements are occupied with previous computations), it will be

placed in the input buffer together with the time of its arrival (in the time queue).

And once a processing element is free this input data will be allocated to the free

processing element for processing. The processing element will be busy with the pro-

cessing for at most CLmax cycles. The number of memory places within the reorder

buffer equals the latency Lat of the system. This implies that, if an input data is in

the input buffer there is always a free place for that data within the reorder buffer, as

each data sample, with CL(vj) < Lat, reserves an output position within the reorder

buffer.

Notice that the time queue can be replaced by a simple counter that counts the

operands dispatched to the processing elements and stores its value in the start buffer

of those processing element. This is allowed because the input buffer acts as a FIFO.

Obviously this counter equals the time counter if the input queue is empty.

So the architecture can be improved upon, if we devise a system with one buffer (for

both the input- and output data) were the number of memory elements, within the

buffer, is equal to the latency Lat, and allowing the outputs and inputs to be read

and then written to each memory element in a cyclic fashion. Such a system would

combine the input buffer and the reorder buffer and get rid of the time queue and
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address selection unit of the architecture described in figure 5.3.

5.2.8 Improved Hardware Architecture

In this section we examine an improved hardware architecture in more detail (see

figure 5.15). The architecture consists of the following elements:

• A single memory buffer with N = Lat memory elements, each memory element

can store the operands of the function implemented by a processing element

PE.

• A number of K processing elements PE1 . . . PEK , each processing element im-

plements the same functionality.

• Two memory pointer registers called first, last.

• K registers, one for each PE, that store the id’s of the input values that are

currently processed.

• A scheduler which controls the scheduling process of the system, and

• Busses for communicating the operand data between the memory buffer and

the processing elements.

The system operates as follows: a single memory buffer MEM [N ] with N memory

elements organized as a cyclic queue, is used to store the incoming data operands

(stream samples). The life cycle of the operands is similar to the one described earlier.

Two memory pointers are used to store the position of newly incoming operand and

output data (first) and the position of the oldest operand waiting to be dispatched

to a processing element (last). At system initiation, first and last will point to the

same memory address. On each clock cycle an output stream sample will leave the

system and a new input sample will enter the system. The steps taken to read a new

input stream sample and produce an output stream sample are summed up by the

following actions which are performed in a cyclic fashion.
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• First: On each clock cycle, the scheduler will read the operand stored within

the memory position pointed to by the register first and produce that value

on the output stream of the system. After that it will read the newly arrived

input data an place it at that same memory position. Finally, it will increase

the pointer position of the register first according to the following equation:

first = (first + 1) mod N .

• Second: the scheduler will scan the processing elements to see whether they

have completed the computation of a previously dispatched operand. If some

processing elements have completed a computation (and are ready for a new

one), the scheduler will write their outputs into the memory buffer MEM using

the information stored in the allocation table. I.e. the output is restored in the

buffer MEM at the same location as the input was stored. For example if the

input with id 4 is executed by PE3 the id 4 is stored in the id register of PE3

and the result of the computation is stored at location 4 of the buffer MEM .

• Third: the scheduler will try to dispatch the operands stored within the mem-

ory range MEM [first . . . last] starting from the operand stored at MEM [Last]

to the available ready processing elements.

Note: the memory range MEM [first . . . last] now behave as the input queue

of the system. On each successful dispatch of the input value identified by last

to the processing element PEi, the scheduler will store the value last, i.e. the

id of the operand in the id register of processing element PEi.

• Finally: The processing elements will then perform the required computa-

tion, within at most CLmax clock cycles. The processing elements will indicate

whether they are active or not using an active signal, which is monitored by the

scheduler. This scheduler uses the active signal, of the processing elements, and

the information in the allocation table to decide whether a processing element

is ready for a new computation.
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Figure 5.15: The new hardware model

Discussion

This improved architecture uses a single memory buffer for the system operation. The

latency of the system Lat is predetermined and calculated by simulation as described

in section 5.2.4. Also this design faces the same problems of writing many output

results at the same time to the memory buffer (multiple communication) and com-

municating inputs to processing elements in the same clock cycle. Hence the memory

buffer should be multi-ported and there should be a sufficient number of busses that

communicate the data between the processing elements and the memory buffer. Visa

versa, in practice this is an expensive solution. One way of solving this is to delay the

system and reserve extra clock cycles for writing the results of the processing elements

to the memory. This is a feasible solution if the number of processing elements is not

large, as the increase of latency of the system in this case would be proportional to

the number of processing elements.
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Another design problem is the communication overhead between the processing ele-

ments and the scheduler see figure 5.16.

Figure 5.16: Communication busses between scheduler and processing element

If the communication is synchronous, the transport of data operands will take one

clock cycle extra for each wr action. Since the scheduler has an output register and

the procesing elements have an input register and they are both synchronized using

the same clock signal. If we assume that each iteration of a non-manifest computation

takes one clock cycle, than the complete computation will take at most CLmax + 2

clock cycles. One solution is to use the design parameter CLmax +2 instead of CLmax.

This will allow us to maintain synchronicity at the cost of extra latency. Another

solution is to design the processing element as a Mealy model and the scheduler as a

Moore model (see figure 5.17).

In this way, communication within one clock cycle will have a path with only one

register which is within the scheduler. This means that if a computation takes one

iteration it will consume one clock cycle1.

1Note: Although the communication overhead is lower than the synchronous communication
solution, the critical path is probably longer.
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Figure 5.17: Communication model between scheduler and processing element using
Mealy and Moore models

5.2.9 Conclusions of the simple model

In 5.2 we have shown how to design and implement a processor capable of handling

an operand stream. The processor specification is a single algorithm implemented

in an executable specification language such the programming language ”C”. The

algorithm is a non-manifest algorithm which means that the number of clock cycles

required to perform a single computation is not known off-line or at compile time.

Design parameters of the processor are :

• latency

• number of processing elements

• size of the buffers

The latency could be obtained theoretically by equation 5.2.6 which provides an up-

perbound to the latency. Better results were obtained by a cycle count simulator

which is also capable of providing the memory requirements and other design param-

eters. Simulation results and analytical calculations show that for a fixed number

of processing elements the latency of the system is linear to the workload bound B.

Increasing the number of processing elements decreases the latency but the latency
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is bounded by CLmax. Having more processing elements than CLmax is useless and

will not improve the latency (see theorem 5.2.2).

The implementation of the processor is strait forward once the design parameters are

obtained. We have provided a basic processor design and an improved processor. The

improved processor reduced the memory requirements of the system by eliminating

redundant memory. The implementation requires that more than one processing

element can write its output to memory at the same time, this posses a number of

problems and results in a design which scales to the number of processing elements.
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5.3 The Complex model

From section 5.2 on page 80 we know that it is possible to perform dynamic schedul-

ing in hardware. For an application with non-manifest data dependant loops, dy-

namic scheduling in combination with out-of-order execution can save clock cycles

that would have been wasted if a static scheduling scheme was used. In section 5.2

we discussed applications that could be modeled as a single non-manifest loop. This

is a real limitation, since applications usually consist of multiple interacting functions.

Those functions can be manifest or data dependent non-manifest. In chapter 2 we

mentioned that such applications can be modeled as a directed acyclic application

graph see figure 5.18.

Figure 5.18: An example of the application graph

Nodes of the application graph represent algorithmic functions. Those functions are

usually presented in a programming language as loops. The nodes of the application

graph are annotated by the minimum and maximum < min, max > number of clock

cycles needed for its execution. For example in figure 5.18 node A1 has a minimum

number of min = 1 and a maximum number of max = 3 clock cycles. The actual

number of clock cycles needed at run time depends on the data (operand values)
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that is provided to the function. If the nodes are manifest functions (i.e. min =

max), the exact number of clock cycles needed is known in advance. Nodes within

the application graph do not always have to be represented as loops, they can also be

a simple basic-block of the algorithm specification (a sequence of instructions which

perform the function needed). In the context of this chapter, we are only interested

in the time delay caused by the execution of a node and its dependencies. The edges

of the application graph represent function dependencies within the application and

they carry the operand data from one function to the other. The output operands of

the function A4, for example, are provided to function C4. In this thesis we assume

that the application graph represents a streaming application: the input-operands

arrive at the input-node as a stream of data at regular time intervals and the outputs

will be produced at the output node after processing as a stream of output items.

In this model there are no dependencies between successive input operands, hence

nodes of the application graph do not have to wait for more than one operand on the

same input edge and thus the samples arriving at the input nodes lead to independent

computations. The execution behavior of a dynamically scheduled architecture for an

application with non-manifest data dependent loops, varies in time (i.g. the latency

is data dependent) compared to its statically scheduled counter part.
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Figure 5.19: A possible static schedule of the application application graph

Figure 5.19 shows a possible static schedule of the application graph given in figure

5.18. In this schedule we assume there is one processing element of type A, two of

type B, and one of type C. Since in a static schedule the number of clock cycles for

a function node and hence the execution time behavior has to be known at compile
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time. The only possible way to produce a schedule for an application with non-

manifest loops is to assume the worst case execution of the processing elements which

is the sum of the (worst case) executions of the nodes on the critical path (the path

with the longest execution delay). For the application graph shown in figure 5.18 this

is 29 clock cycles (see figure 5.19). The execution time of a dynamic schedule on the

other hand depends on the actual operand values provided at run time. The critical

path in this case varies between 11 (the sum of the minimum latencies of the nodes

on the critical path) and 29 clock cycles depending on the actual input operands

provided.

5.3.1 Problem Description

In the previous section we saw that, for a worst case scenario, a statically scheduled

architecture wastes clock cycles when the application contains non-manifest loops.

The actual amount of clock cycles saved in a dynamically scheduled architecture

depends on the following:

• The applications itself, in other words the difference between the worst case

number of clock cycles and the best case number of clock cycles.

• The data set provided at run time (the input stream),

• The number of available processing elements, and finally

• The overhead of the implementation architecture.

Under identical conditions, a dynamically scheduled architecture uses the processing

power more efficiently compared to a statically scheduled architecture, because it is

capable of using all available clock cycles.

The problem formulation of the complex model is described as follows:

1 Design and implement a processor which is capable of dynamically schedul-

ing the nodes of the application graph, consisting of manifest an non-manifest

functions.
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2 This processor is to operate in a streaming environment.

3 The inter arrival time δ of two input samples (the minimum time between

two successive stream operands) is smaller than the time required to perform

the computation of the application graph (it can even be smaller than the

computation of a single node), hence, the processor should have the capability

of performing parallel computations.

4 The processor should be able to handle the stream throughput at a fixed max-

imum (to be determined) latency Lat.

5.4 The High2 DFM

A possible solution to the requirements mentioned above is the High2 Data Flow

Machine (DFM ). Which is a coarse grained data flow machine for high-throughput

streaming non-manifest applications.

The High2 DFM is derived from the classical data flow architecture and its scheduling

is done dynamically in hardware.

Applications of the High2 DFM are high-throughput streaming applications and are

modeled by an application graph where the nodes of the application graph represent

the algorithms or functions of the application and the edges of the application graph

represent the data or operand dependencies between the nodes. High throughput

applications are characterized by having a stream sample (operand) rate which is

higher than the time needed to perform a single computation. In order to cope with

this requirement, the DFM consists of a number of high performance execution units

(called EU’s) interconnected by a network (see figure 5.20). The execution units are

implementations of the functionalities within the application graph and each execution

unit type is capable of computing many independent operands simultaneously. In

order to perform multiple computations simultaneously within a single execution

unit, the execution units of the DFM contain more than one processing element.
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Where each processing element is a hardware implementation of a same algorithm

type. In order to enhance the performance even further, results of the computations

within an execution unit can be out-of-order. Hence, by design, stream operands can

overtake each other during execution. This also means that stream operands should

be independent of each other, which limits the type of applications suited for this

architecture.

5.4.1 Abstract DFM Model

DFM structure

An application graph AG consists of number of nodes each identified by a tuple 〈P, k〉
in which

- P is the type of the node, i.e. the algorithm the node performs, and

- k is the instantiation of that node type. 0 ≤ k < inst(P ) in which inst(P )

denotes the number of instantiated node of type P .

Each node is provided with one or more inputs. These inputs of a node are identified

by i such that 0 ≤ i < inp(P ) in which inp(P ) is the number of input nodes of P .

So an input node in AG is uniquely identified by 〈P, k, i〉. We assume that each node

has one output, hence the outputs are uniquely described by 〈P, k〉. The data flow

between the nodes and thus the dependencies are given by the edges between the

node outputs and the node inputs in the application graph. Such an edge between

the output of node 〈P1, k1〉 and input 〈P2, k2, i〉 of node 〈P2, k2〉 is uniquely described

by 〈〈P1, k1〉, 〈P2, k2, i〉〉.
The successive input values (the operands) are modeled by (identified by) 〈t, P, k, i〉,
in which t is an integer.

The application graph describes the way in which the successive algorithms deal with

input stream. The output value of a node only depends on one set of inputs on that

node. That means that an output value only depends on the input values 〈t, P, k, i〉
with 0 ≤ i < inp(P ) of the node 〈P, k〉. So the consecutive outputs are independent.

The dependent operands all have the same t, viz. the time t at which the input
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operand entered the system. So the output value 〈t, P, k〉 of a node 〈P, k〉 depends

on the operands 〈t, P, k, i〉 with 0 ≤ i < inp(P ).

The High2 DFM consists of a number of execution units EU P0, EU P1, EU P2, . . ..

Each execution unit EU Pi is designed for efficiently executing the algorithm specified

by the node type Pi in the application graph and all instantiated algorithms 〈P, k〉
are executed by execution unit EUP . So the number of execution units in the High2

DFM equals the number of processing types in the application graph. An execution

EUP may contain several processing elements PE that are each capable to execute

the algorithm specified by P .

The time difference between two consecutive operands of the input stream is denoted

by δ. Hence 1
δ

is a measure for the speed of operand arrival (also called data-rate or

stream throughput).

Each execution unit EU P (see figure 5.20) contains an operand table OT , a ready

queue RQ, and a set of processing elements {PE}. RQ is basically the set of matched

operands {〈t, k, i〉} which await a processing element. The operand table OT holds

the arriving operands of the execution unit and stores the destination addresses of

each node instance. A summary of the above definitions is given in table 5.2.

Table 5.2: DFM Model Summery
name description

P process or function type
k instance number of P
i node input number (i ∈ inp(P ))
PE processing element
EU P execution unit of node P
RQ ready queue
OT operand table
δ time difference between two stream operands
nodes {< P, k >}
inputs of nodes {< P, k, i >}
operands {< t, P, k, i >}
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Figure 5.20: The High2 DFM template

DFM operation

The first execution unit within the DFM , which is the execution unit representing the

first2 function within the application graph, will start processing the input operands.

Operands of an execution unit can be in one of the following states:

• Waiting: for a matching operand

• Matched: all input operands belonging to a function are available

• Dispatched: matched operands are dispatched to a free processing element

which is executing the function of type P

• Processing: the computation on the operands is taking place.

2Note: there can be multiple first nodes within this model
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• Transport: the processing has commenced and the resulting operands are

written to their destinations

In order to process the operands of the DFM each EU performs a number of similar

tasks repetitively. The tasks of an EU are summarized as follows:

• Matching: searching the operand table for matched operands, and writing the

found matched operands to the ready queue.

• Dispatching: In this step matched operands in the ready queue are dispatched

to a free processing element

• Executing: In this step the computation of the function identified by node P

and operands 〈t, k, i〉, ∀i ∈ inp(P ) take place in a free processing element.

• Writing back: The result of the computation is written to its destination.

Execution of a processing element within an execution unit EU P can take place

as soon as for node instance k and operand time t, all tuples of time t are matched

(hence all 〈t, k, i〉 with 0 ≤ i < inp(P ) are in the operand table) and EU P has a

free processing element. In other words, the operands are matched and dispatched

to a free processing element. In case all processing elements are occupied the triples

〈t, k, i〉 with 0 ≤ i < inp(P ) are removed from the operand table and a tuple 〈t, k〉 is

added to the ready queue RQ, awaiting a free processing element.

RQ is a set of tuples {〈t, k〉}, the set represents the matched operands that are ready

for execution. Therefore the set {〈t, k〉} is ordered lexicographically and as soon as

a processing element is free, the top value within RQ, is removed and dispatched

to the free PE. During dispatching the operands 〈t, k, i〉 with 0 ≤ i < inp(P ) are

transferred to the processing element.

Once the processing (within the processing unit PE) of the operands identified by the

tuple 〈t, k〉 has been completed, the resulting data is stored and triples 〈t, k′, i′〉 are

added to the operand tables of the destination execution units EU P ′. Destination
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addresses within the DFM comply to the edges in the application graph. Hence, the

destination address of EU P is the set of nodes {P ′} within the application graph

application graph where there exists an edge within application graph that connects

node P to the set of subsequent nodes {P ′}. Note: Since each execution unit EU P

within the DFM may have more than one processing elements PE and the computa-

tions performed by the processing elements are non-manifest, many outputs become

available simultaneously. Those output results will become the operands of destina-

tion execution units and hence are placed in the operand tables of the destination

EU ′s via a network. This means that the network may eventually form a bottleneck.

DFM implementation details

In each execution unit EU P the operand 〈t, k, i〉 is stored for all k in separate

tables. In order to synchronize the operands of nodes that have more than one input,

an operand indexing scheme is used. This indexing scheme matches operands with

identical arrival times t and allows the processing elements of the execution unit

to operate on the correct (synchronized) input operands, hence computing correct

results. Clearly (due to memory size limitations) the index t cannot be a natural

number; hence its range has to be reduced such that no two indices are mapped on

the same reduced value. The maximum number of time indices alive in the system

is the maximum latency multiplied by the input data-rate q ≥ Latmax

δ
. So if we chose

idx = t mod q in which q is larger than the maximum number of time indices alive,

then 〈idx, P, k, i〉 are unique. Taking the indices idx = t mod q makes it impossible

to maintain an ordering. This can be solved in different ways. For example by

maintaining a value oldest operand in each execution unit.

5.4.2 High2 DFM Implementation

The High2 DFM is an implementation of the DFM model described in section 5.4.1.

It consists of a number of execution units inter-connected by a network and means

for scheduling and dispatching the workload offered to the system. Each execution
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unit corresponds to a node type in the application graph. For optimizing the number

of execution units first a clustering process is used to maximize the number of node

types in the application graph and at the same time maximize the granularity of these

nodes. Maximizing the granularity of the nodes and maximizing the number of node

types in the application graph, improves the computation to communication ratio and

leads to a DFM with a minimum number of execution units. Once this is achieved,

designing an application based on the High2 DFM merely consists of mapping the

application graph onto the architecture of the DFM and determining a number of

design parameters.
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Figure 5.21: Mapping the application graphonto the DFM

Each node type in the application graph maps onto a single execution unit that will
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calculate the function specified by that node and each edge maps to a destination

address of an execution unit (see figure 5.21). Figure 5.22 gives the DFM machine

that belongs to the application graph of figure 5.18.

Figure 5.22: The High2 DFM template

Elements of the DFM architecture can be summarized as following:

• Execution Units: the DFM is among others built from a set of execution

units

{EU P0, EU P1, EU P2, . . .}. Each execution unit EU P is responsible for ex-

ecuting a single function-type identified by the node P in the application graph.

The execution unit can be busy with the execution of many function-nodes

simultaneously. This is allowed for because each single execution unit may

have more than one processing element PE that will execute the same func-

tion. Those processing elements execute in parallel. The number of processing
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elements within each EU is one of the design parameters that need to be deter-

mined during the design process. The DFM also contains two special types of

units that do not perform any algorithmic functions; the input unit and the out-

put unit. The input unit is responsible for transporting the input stream data

(operands of the nodes) to the execution unit that implements the first input

nodes of the application graph (In this case EU A node A1 and EU B node B1

in figure 5.22). The input unit is programmed with those nodes as destinations.

The input node issues each new data operand a time index, this time index is in-

cremented according to the indexing scheme described in the DFM model 5.4.1.

The output node is also a special node; it is responsible for synchronizing the

output stream with the input stream if required. Some applications can benefit

from the fact that the output stream is dispatched out-of-order. Similar to the

principle of result forwarding used within the Tomasulo scheduler described in

section 4.3.3. If the specification requires that the output stream is to be syn-

chronized with the input stream, the time-indices allocated to the operands are

used for the synchronization in a similar way as the mechanism used in a reorder

buffer. Each execution unit has a memory block for storing the operand-data, an

operand table for operand matching and synchronization, a ready queue which

will hold matched operands, a number of processing elements; that will perform

the actual computation, and finally a memory-controller which is responsible

storing the operand-data into the memory and updating the operand table.

• Network: The network is responsible for transporting the data operands which

contain the operands data, time-index information idx from a source execution

unit to the destination execution unit. If the source and destination units are

the same unit, transport of data takes place within the execution unit itself.

The destinations address (which is programmed within the operand table of

the source EU) contains the set of tuples {< P ′, k′, i′ >}. Where P ′ is the

destination EU , k is the instance number of that EU and i is the operand

input number. Upon completion of a computation the Processing elements

generates the operand tuple < operand− data, idx, < P ′, k′, i′ > > and sends it
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to the network.

Each execution unit is capable of executing a number of identical functions in parallel.

The actual amount of parallel executions it can perform is dependent on the number

of processing elements (PE’s) it has, and is in fact a design parameter. Parallel

operations is needed if the workload per node type is larger than the work that can

be performed by one PE. Moreover the High2 DFM makes use of the inherent

parallelism available within the application. Each execution unit within the DFM

contains the following elements (see figure 5.23):

• Memory: The memory is used to store the operand data. When a new operand

data arrives from the network, the decoder places it into a free memory location.

The operand data remains in memory until it is needed by a processing unit.

• Decoder: The decoder is responsible for allocating new operands to a free

memory location within the memory block. After writing the operand to mem-

ory, a tuple containing the pointer to the operand data and the of the operand

data size, is placed in the operand table. The tuple is written in a three dimen-

sional table at the position, row-id (node instance k), time index idx position,

and operand-id (node input number i).

• Operand Table: The operand table is used for synchronizing the input operands

of a node, in case the function has more than one inputs, and for storing the

destination addresses of each node instance. Since the input-operands of a node

can overtake each other due to out-of-order execution, they come from different

paths at different moments and many nodes of an application graph with the

same node type can map onto one hardware execution unit, a synchronization

mechanism is needed to ensure that the operation is performed with correctly

matched input-operands. The operand-table sorts the input operands according

to their node-id P , time index idx information, and node input value i called

op id within figure 5.23. The latter indicates at which function input should

the operand data be placed.
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Figure 5.23: Architecture of an execution unit

• Operand Selector Once the matching process of newly received operands

has taken place. The operand selector will search the operand-table, for those

matched operands. Operands are considered matched and ready to be computed

if all tuples 〈idx, k, i〉 with i ∈ [0 . . . inp(P )] are available in the operand table

and there is a free PE. Once matched operands are found, the operand selector
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issues an instruction containing the operands pointers within the local memory

of the execution unit in the DFM and the destination address information into

the ready queue. In order to assure that the oldest operands are serviced first,

the operand selector steps through the operand table according to a certain

scheme. It first looks for operand-matches at the column indicated by the

oldest operand pointer, after that it will look at the other columns. Each

column is checked from top-row to bottom-row. This scheme insures that the

oldest operands within the operand-table have the highest priority and that no

starvation can take place. Note: Another scheme that can be used to insure

that the oldest operand is serviced first, is to write all matched operands directly

to the ready queue once the match has been detected and then sort the ready

queue afterwards on the bases of the oldest operand within the queue.

• Oldest Operand pointer and counters: The operand selector makes use of

an oldest operand pointer and a number of counters (Ctr0, Ctr1, etc. in figure

5.23) whilst selecting matched operands from the operand table. The oldest

operand pointer and counters are used to maintain operand ordering within

the operand table. The mechanism works as follows: each idx has a separate

counter. The counters are used to count the number of matched operands for

each specific idx = t mod q where q≥Latmax

δ
. An overflow in counter countidx

will indicate that the all k node instances idx had matched operands and hence,

the operands with time idx have left the system indicating that the next operand

position is idx = (t + 1) mod q is the oldest operand within the system. The

oldest operand pointer points to the oldest operand idx and is incremented in

a modulo fashion once the counter of the oldest index overflows. The operand

selector starts selecting matched operands starting from the position of the

oldest index. If a match is found, the matched operands will be written to the

ready queue. This will insure that the oldest operand will have the highest

priority of being dispatched first and hence the maximum delay of the system

is not exceeded by unnecessarily delaying the oldest operand.

• Ready Queue: The ready queue basically holds the instructions placed by the
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operand selector. Those instructions are stored in fifo-order.

• Dispatcher: The dispatcher continuously monitors the state of the ready queue

and the ready signal of the processing elements. One or more instruction(s) are

dispatched, at the same instance, according to the number of free processing

elements and available instructions within the ready queue. After dispatching,

the instructions are removed from the ready queue.

• Processing Elements: The processing elements are responsible for the actual

computation work. The life cycle of the processing elements is as follows:

- decoding instructions containing the operand pointers and the result des-

tination addresses

- retrieving operand values stored within the memory of the EU

- executing the function

- writing back the results and raising the ready signal

The computation can be a manifest computation or non-manifest. In the case of

non-manifest computations, the processing unit will be occupied for a variable

number of clock cycles. The processing unit indicates when the computation

has finished by raising its ready signal, which is continuously monitored by the

dispatcher. Upon completion of a computation, the processing element will

write the results to the destination addresses indicated within the instruction.

Which could be the execution unit itself or a different execution unit. If the des-

tination execution unit is the execution unit self, the results will written to the

local memory of the execution unit via the local busses. If the destination unit

execution unit is different, the results will be forwarded to the network which

will eventually write those results. The implementation of processing elements

can vary from dedicated hardware implementations to general purpose proces-

sors. The actual choice depends on the node function and its requirements.

Since execution units have different processing element implementations, the

complete DFM is considered a heterogenous system.
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• Local Busses: The busses basically transport operand data to and from the

processing elements and the memory.

Example

The input node receives the operands from the input stream. The input node packs

the operands into network operands. Each operand will contain an index idx, node-

id P , operand input number i and the operand-data itself. Indices are given to the

incoming operands in a modulo fashion and the total number of indices is calculated

by equation 5.4.1:

num(indices) =
maxdelay(application graph)

δ
(5.4.1)

Since operands are allowed to overtake each other in the execution stage, due to the

non-manifest properties of the functions, a situation can occur were it would not

be possible to properly synchronize the output stream with the input stream. The

operand indexing scheme is the mechanism used to allow for the output stream to be

synchronized. Operands are indexed upon their arrival and are sorted according to

their indices at the output unit. In order to have sufficient memory space to store

the maximum number of operands that can coexist at a single execution unit, each

operand table will have an operand column field for each index and the memory space

requirement is set to be the number of operands of the operand table times the size

of the operands data. If the operand-data size is variable, the largest operand data

size is used. Notice that the number of time indices calculated in equation 5.4.1 is

equivalent to the maximum number of data operands that can coexist in the system

at a single time instance.

The input node sends the operands to their destination execution units, which it has

been programmed with. Once an operand is received by an execution unit, it will go

through a number of steps before being processed. The operand data stored within

the operand is copied to a free memory location by the decoder of the execution unit,

the decoder will then place another operand containing the address of the operand

data, and hence identifying its availability, into the operand table. The position
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within the operand table is identified by the node-id P of the application graph (e.g.

A1 = 1, A2 = 2, etc.), the index number given to the network operand by the input

node, and the operand input number i in case the operation to be performed requires

more than one input operand see figure 5.24.

In figure 5.24 a number of operands have been written to the operand table of exe-

cution unit C. The first column represents index 0 operands the second index 1, etc.

The oldest operand pointer has a value of 0 which indicates that the operands within

column 0 are the oldest operands within the system. The column counters have the

values (0, 1, 0) indicating that there is no operand match in columns 0 and 2 and that

there is one operand match in column 1. The operand selector continuously scans the

operand table for operand matches starting from the column identified by the oldest

operand pointer. If no matches are found in that column the operand selector will

scan the next columns. Once an operand match is found, an instruction containing

the operand memory pointers, the index of the operand match and the destinations

of the operation result is written into the ready queue. The operand match is then

removed from the operand table. Figure 5.24 shows that the operand match for node

4 in index 1 has been removed from the operand table and that an instruction has

been written to the queue. This instruction points to the operand position in memory

and holds the destination address which is the output node. The dispatcher contin-

uously monitors the ready queue and the availability of the processing elements. It

will dispatch instructions to the free processing elements. The processing element,

will obtain its operands from memory and start the computation. Based on the type

of computation that has to be performed a number of clock cycles are consumed.

Once the processing element has finished its computation it will write its results to

the destination addresses within the instruction. If the destination address is another

execution unit, an network operand containing the result data, index idx, node-id

P , operand input number i, is written to the network. If the destination is the local

execution unit self, the processing element will place the result on its local bus in

combination with the index and destination node-id and operand-id. This process

is repeated by each execution unit. Once network operands reach the output node,

they will be placed in a reorder buffer at a position dependant of idx value. In some
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Figure 5.24: Writing an input operand at the correct position within the operand
table

situations it is not needed to synchronize the output stream, this is the situation if

the order of the operands of output stream is not important. When this occurs the
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output will be produced without passing through the reorder buffer.

5.4.3 Design shortcomings

In the High2 DFM described in the previous section a number of shortcomings can

be identified:

1 Global network bottleneck: due to the out-of-order execution mechanism

of the High2 DFM , many processing elements of various execution units can

become ready simultaneously. Hence, these processing elements would like to

use the network at the same time to transport their operands. The network

capacity would on average be capable of handling an average operand load,

with a minimum delay. If the situation occurs that all Processing elements of

the system are ready at the same time, the network will be overloaded, thus

causing extra delays in the system.

2 Local network bottlenecks: Another similar problem may exist locally within

an execution unit. If all processing elements are released at the same time and

the ready queue contains sufficient instructions, all these processing elements

will try to use the local busses simultaneously in order to get their new operands

from the local memory. Hence, a local bus communication problem will occur.

One way of solving the latter problem is to predict and pre-fetch the operands from

the local memory. Prediction would be possible as the execution unit already con-

tains the addresses of the required operands within the instructions dispatched to the

ready queue. The pre-fetched operands would be stored in local registers within the

processing elements and thus avoiding any extra delays that might be caused by local

bus communication bottlenecks.

High2 DFM algorithm properties

We summarize the properties of the High2 DFM as follows:

• The scheduling algorithm is starvation free as all positions within the operand

table are checked for a match.
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• The scheduling algorithm is deadlock free since there are no cycles within the

application application graph and the buffering policy ensures that no processing

element has to wait on writing its data.

The differences between the High2 DFM architecture and the classical Data flow

Machines are:

• Nodes within the High2 DFM are not instructions but coarse-grained pieces of

code including non-manifest loops.

• The application domain of the High2 DFM is streaming applications

• The amount of tokens (operands within the High2 DFM ) are limited by design

5.4.4 Possible system modifications and improvements

The design provided is just a template and it can be improved in various ways. Some

of the possible modifications are summarized below:

Energy aware modifications: by using resizable memory queues we can turn of

the queues which are not active and hence be more energy efficient. By varying the

number of active processing elements and turning off non-active elements, the system

can save energy. Also non active processing elements can be turned off to save power.

Elimination of redundant computations: by checking the operand values within

the execution unit memories, the system can detect duplicate operands and hence

duplicate identical computations. Since duplicate operands would give the same exe-

cution results, the system can avoid duplicate computations by providing the results

of the first computation to all successor computations within a constant time frame.

Adaptive functionality or reconfigurable execution units The processing el-

ements of an execution unit could be programmed with more than one function im-

plementation. The actual function is chosen at run time. This allows for dynamic

system reconfiguration.
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5.4.5 Design Flow DFM

We wish to design a streaming application based on the DFM architecture. The ap-

plication is described by means of an application graph which is a set of interconnected

nodes. Each node expresses behavior and is described in an imperative language such

as C.

We assume that at design time a typical input stream is available. (Typical here

implies ”if the system can manage this input stream we are satisfied”).

We want to optimize the DFM system such that it would have a minimal number of

processing units with an acceptable overall latency.

The design of the processing elements is part of the design process.

Important parameters of the DFM are:

• Number of execution units ( is equal to the number of different node types)

• The number of processing elements in each execution unit.

• The maximum latency

• The buffer sizes

In order to determine these parameters a parameterizable DFM simulator was de-

veloped. Building a full simulator of the DFM and its processing elements for deter-

mining the parameters is not very useful because of the simulation speed.

We assume that the specification can be simulated on the level of the application

graph. I.e. a program is available consisting of the processes that describe the behav-

ior of the nodes of the application graph. For each input sample (value on the input)

it calculates all the intermediate values, i.e. the values at the outputs of the nodes.

For each node type a PE is designed. During the design of the PE’s we get a good

impression of the number of clock cycles needed to execute a particular line or block

of source code by the PE. This information is used to augment the process source

code with a clock cycle counter. Hence, when simulating the ’typical input stream’

we get a good impression about the number of clock cycles that need to be executed

by the different PE ′s. This part of the design flow is called the ’Benchmarking’.
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So profiling provides us with a file in which for each input value of the typical input

stream, the number of clock cycles needed for executing each node in the application

graph is given.

So the profiling process produces a table of which the number of rows equals the

number of samples of the typical input steam and the number of columns equals the

number of nodes in the application graph. The ith row corresponds to the ith sample

in the typical input stream and each column is identified by a node identifier. The cell

(i, j) contains the number of cycles process j needed to execute for the input sample

i.

Table 5.3: Example: cycle count table

A0 A1 B0 C0 C1
0 11 15 3 55 32
1 7 12 5 17 37
2 15 9 2 23 11
... ... ... ... ... ...

We will call this the ’cycle count table’ see table 5.3. Notice that in practice due to

its size this file is hardly to inspect visually.

From the cycle count table we can make an estimate of the number of PE’s needed

in each execution unit.

A first approach would be to determine the average number of cycles per sample and

per node type. However most of the workload might be concentrated in a short period

which would lead to unacceptable long latencies.

A second approach would be to determine the maximum workload for each node type

over all samples. In that case we would get too many PE ′s. Therefore we will derive

the maximum workload over a sliding window. Before defining this quantity, we first

observe that the number of PE ′s depends on the cycle count per node type. Hence

we reduce the cycle count table by adding per row the cycles of the instances per

node type. So the ’reduced cycle count table’ of our example will become (see table

5.4.5):

Column A determines the number of PE ′s needed in execution unit A, column B

determines the number of PE ′s needed in execution unit B, etc. For estimating the
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Table 5.4: Example: reduced cycle count table

A B C
0 26 3 87
1 19 5 54
2 24 2 34
... ... ... ...

number of PE ′s, starting at sample i, we determine the number of cycles (work load)

needed over a window of m samples, and determine the maximum of this work load

over all i. So we determine:

WLmax(N)(m) = max
0≤j≤SIZE−m

(
j+m−1∑

i=j

CL(i, N)) (5.4.2)

in which CL(i, N) is the number of cycles at row i, column N of the reduced cycle

count table. I.e. the total number of cycles the nodes of type N have to execute in

order to process the input sample i.

Notice that if m = SIZE, then WLmax(N)(m)
m

is the average workload to be executed

by the nodes of type N .

The cycle count table also provides us with the minimal latency that can be obtained.

We assume a synchronous environment. So the latency of the system is determined by

the maximum time it takes to calculate the system output value from an input sample.

Given the cycle count table and the dependencies that follow from the application

graph, for each input sample in the cycle count table, the total time (in clock cycles)

for calculating the system output can be easily and fast calculated. So we calculate

the latency for each sample in the cycle count table starting from the assumption

that always immediately a processing element is available (unlimited resources). The

maximum taken over these latencies is the minimum system latency of the system,

Latmin.

The design flow is supported by software that calculates from a cycle count table the
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values for various values of m and the value Latmin.

Starting from WLmax(N)(m), we roughly may assume that if we have sufficient pro-

cessing elements to manage this workload, the data will not have to be buffered much

more than m samples before it is executed. Clearly, we want to have a reasonable

latency. So a good estimate is to start from WLmax(N)(m) with m is about Latmin

for each node type N . So the number of processing units NPE(N) of type N is
WLmax(N)(m)

m
.

The next step is to determine the exact maximum latency and the buffer sizes. For

this purpose we have built a ’token flow simulator’ of the DFM . In this simulator

no real data is processed. The input samples are considered as tokens that flow

though the system and which are delayed in the operand selector (for matching), the

ready queue (waiting for a free PE) and in the processing elements. The delay in the

processing elements follows from the cycle count table. So the input of the token flow

simulator is the cycle count table. The simulator calculates the delay in the buffers,

the required buffer sizes, and the maximum latency of the system.

The simulator is fast because only the token flow is simulated.

Playing with different numbers of processing elements in the execution units makes

it possible to optimize the system.

Additionally the simulation software provides the possibility to stress the system with

maximum workload that just satisfies the maximum workload the system can deal

with. I.e. the work load over a period m never exceeds m × NPE(N)

5.5 Conclusions

In this chapter we provided solutions for designing architectures which are capable of

handling non-manifest loops in streaming environments. The simple situation, which

is the situation of a single non-manifest loop algorithm was discussed in section 5.2.

By having multiple implementations of the same algorithm running in parallel on

independent stream computations we were able to provide an architectural solution

which can handle various stream loads under various throughput conditions. Given a

stream load bound we can search for valid solutions in terms of number of processing
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elements, latency of the system and memory requirements. Since in practice applica-

tions are more complex and can be composed of multiple interacting algorithms, we

provided a solution for the general case in section 5.3. This solution is based on ideas

taken from data-flow machines. Data flow machines have the property that compu-

tations are triggered by the availability of their operands and not by an instruction

stream. The combination of data flow-machines with hardware dynamic scheduling

provides an architectural solution for the streaming applications we consider in this

thesis. The design of the High2 data flow machine, which is an application specific

dedicated processor capable of utilizing the parallelism inherent within an application,

is provided in section 5.4.2. The High2 DFM was designed with streaming applica-

tions in mind, this means that throughput is of major importance, the DFM can be

tuned at design time to meet certain throughput requirements, this is achieved by

varying the number of processing elements available for computing the (non-manifest)

functions of the application. Providing solutions for average case stream processing

load and at the same time maintain a high-throughput is possible by varying the

design parameters.

141



142



Chapter 6

Example of High2 DFM

Applications

In this chapter we describe the design method for developing applications

using the High2 DFM as a target architecture. The design method is

needed to derive important system parameters such as size of buffers,

number of processing elements, system latency etc.

6.1 Introduction

In this chapter we show how to design a streaming application, that contains non-

manifest algorithms. We will show a detailed example that will describe the High2

design flow described in chapter 5. The aim of this example is to show how important

system parameters are determined and how design choices relating to the number of

processing elements, number of buffers, and system latency are made.

The information required to implement an application on a High2 DFM are: the

application graph, input stream throughput required in the design process, number

of processing elements of the execution unit within the DFM , and the buffer sizes.

The number of processing elements is calculated based on the stream workload-bound

(maximum workload within a given stream window of size m) and the input through-

put (which is the speed of arrival of the input samples). The input throughput is a
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specification parameter and is provided to the designers. The workload-bound can

be obtained by profiling the input data stream and measuring the maximum bound

within a window of length m samples. The buffer sizes are obtained by simulating the

application on the simulator, measuring the maximum buffer sizes needed and multi-

plying those figures by the size of the input data samples. The rest of the parameters

are obtained by a cycle-count simulator, which will use a cycle-count file containing

the benchmarked cycle latencies of the application for a uniformly distributed input

stream. The simulator will provide the maximum, average, and minimum consumed

number of cycles for the provided input stream for a given number of processing el-

ements. This process is described in chapter 5 and will be summarized within the

next sections.

6.1.1 Example montgomery-gcd-montgomery

In this section we show how to fine tune a High2 processor for the Montgomery-Gcd-

Montgomery mgcdm example introduced in chapter 3.

mont0 mont1gcd

P generator

A generator

A = A%(P-1) +1

16 bit4 bit

16 bitP

a

ApplicationToken generators

16 bit 16 bit

i

a

Figure 6.1: The mgcdm application

The mgcdm application is a fictive application which is used for demonstration pur-

poses only. The Montgomery algorithm within the mgcdm application calculates the

Montgomery inverse of an integer modulo a prime [41]. It requires the input operand
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P to be a prime number and the input operand a to be any value between [1 . . . P −1].

The Montgomery inverses for P = 7 can de deduced from table 6.1 by noting that

mont inv(a, 7) = a−1 ⇔ a ×7 a−1 = 1.

Table 6.1: Multiplication modulo P = 7
×7 1 2 3 4 5 6 7

1 1 2 3 4 5 6 0
2 2 4 6 1 3 5 0
3 3 6 2 5 1 4 0
4 4 1 5 2 6 3 0
5 5 3 1 6 4 2 0
6 6 5 4 3 2 1 0
7 0 0 0 0 0 0 0

From the table we can see that mont inv(1, 7) = 1, mont inv(2, 7) = 4,

mont inv(6, 7) = 6 etc. In the design flow we need to profile the application and

obtain the cycle-count file. In order to provide an input cycle-count file with a uniform

input distribution, the application is benchmarked using all possible 16 bit input

combinations for the input generator a and all 4 bit input combinations for the input

generator P together forming 220 unique input combinations. The reason that the P

operand generator is 4 bits, is that we are only interested in the maximum primes

under 2n. The following input prime values 2, 3, 7, 13, 31, 61, 127, 251, 509, 1021,

2039, 4093, 8191, 16381, 32749, 65521, for example are the maximum prime values for

n = [1 . . . 16]. In order to do so we have introduced the P-generator and a-generator

operand generator functions to the application graph (see figure 6.1). They will

ensure that the algorithms of the application obtain correct inputs (as P input values

must be a prime, and the a input values must not exceed the range [1 . . . P − 1]).

The function P-generator in figure 6.1 is basically a lookup table which chooses the

highest prime number for a given number of bits e.g. for an input value of i=15,

65521 is the highest prime number under 216 and for the input value i=11, 4093 is

the highest prime number under 212. The input operand a must be limited between 1

and P which is provided by the A generator function which basically calculates a = a

mod (P − 1) + 1.
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The Gcd function within the mgcdm application calculates the Greatest common

divider of two input integer values.

The output of the application is basically the function

montinv(Gcd(montinv(a, P ), a), P ). Table 6.2 shows the output for P = 7 and a =

[1 . . . 6].

Table 6.2: mgcdm calculation
a P mont0 gcd montinv(Gcd(montinv(a, P ), a), P )

1 7 1 1 1
2 7 4 2 4
3 7 5 1 1
4 7 2 2 4
5 7 3 1 1
6 7 6 1 1

6.1.2 Design flow

The design flow is depicted in figure 6.2 and it mainly consists of the following steps:

Step1 profiling the application: to determine the execution time (in clock cycles)

for every input combination.

Step2 determine statistics: determine the most important system parameters from

the application profile e.g. maximum number of clock cycles taken CLmax, maximum

workload WLmax(m) etc.

Step3 simulation: simulating the application, with a certain workload, using the

cycle-count input file provided from the application profile and the parameters ob-

tained from step2. This will provide the latencies of the simulated design and the

number of buffers needed.

Step4 Testing: to test the system under extreme workload circumstances a random

input generator is used.
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Simulator

Application

clock cycles

Application

Benchmark

Statistics

WL_max(m), CL_max

WL_max(m)/m = #processors

Random input

generator

WL_max(m)

Max latency

max buffers

Random loaded input

with workload bound

B arround

WL_max(m)

Figure 6.2: The mgcdm design flow

Application profiling

The profiling process is basically done by inserting instruction counters into the code

of the application see figure 6.3. For each process statement the variable cl is incre-

mented. We make the simplification here that each instruction consumes one clock

cycle on the implementation of the target architecture. This assumption is inaccu-

rate but sufficient enough for an approximation of the actual number of clock cycles

consumed. When more accurate implementation data is available, for instance, when

it is known that a code snippet takes n clock cycles, the cl variable is incremented by

n.

Figure 6.3 shows the augmented code for the Montgomery and gcd algorithms. Each

”C” instruction, of the original program, causes the cl variable to be incremented.
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�
long gcd ( long x , long y , long ∗ c l ){

long g , x1 , y1 ;
g = y ;
(∗ c l ) = 0 ; // added benchmarking code
while ( x > 0 ){

g = x ;
x = y % x ;
y = g ;
(∗ c l ) += 3 ; // added benchmarking code

}
return ( g ) ;

}

double montgom inv ( long p , long a , long ∗ c l ){
long u , v , r , s , k ;

(∗ c l ) = 0 ;
a s s e r t ( ( a > 0) && (a < p ) ) ;
{

u = p ; v = a ; r = 0 ; s = 1 ; k = 0 ;
(∗ c l += 5 ) ; // added benchmarking code

}
while (v>0){ // phase i

i f ( even (u )){ u/=2; s ∗=2;
(∗ c l ) += 2 ; // added benchmarking code

} else{
i f ( even (v )){ v/=2; r ∗=2;

(∗ c l ) += 2 ; // added benchmarking code
} else{

i f (v>=u){ v=(v−u )/2 ; s+=r ; r ∗=2;
(∗ c l ) += 3 ; // added benchmarking code

} else { u=(u−v )/2 ; r+=s ; s ∗=2;
(∗ c l ) += 3 ; // added benchmarking code

}
}

}
k++; // count t h e number o f i t t e r a t i o n s
(∗ c l ) += 1 ; // added benchmarking code

}
while (k>0){ // phase i i

i f ( even ( r ) ){ r /=2;
(∗ c l ) += 1 ; // added benchmarking code

} else{ r=(r+p )/2 ;
(∗ c l ) += 1 ; // added benchmarking code

}
k−−;
(∗ c l ) += 1 ; // added benchmarking code

}
return p−r ;

}
�� �

Figure 6.3: The Montgomery and Gcd algorithms augmented with profiling instruc-
tions

�
for ( i =0; i<NUMPRIMES; i++){

P = PRIMETAB[ i ] ;
for ( a=0; a<65536; a++){

b = (a % (p−1)) + 1 ;
r e s = montgom inv (p , b , &c l ) ;
. . . . . p roce s s the montgomery cy c l e s obtained
. . . . . benchmark gcd in a s im i l a r f a sh i on

}
}

�� �

Figure 6.4: An exemplar of the code used for the profiling process

By inserting code around the control structure of the algorithm, the cl variable will

be updated based on the execution path taken at run-time. Since the execution
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path and the number of iterations are data dependent, we can build an accurate

frequency distribution of the amount of clock cycles used for the Montgomery and

gcd algorithms. A fragment of the file containing the clock cycle count for each node

is provided in figure 6.5.

�
”P” ”a” mont0 mont1 gcd t o t a l

31 15 50 35 12 97
31 16 55 40 3 98
31 17 40 35 12 87
31 18 44 35 9 88
31 19 49 35 6 90
31 20 54 40 9 103
31 21 49 39 3 91
31 22 45 40 9 94
31 23 50 35 15 100
31 24 54 40 6 100
31 25 45 44 3 92
31 26 49 40 6 95
31 27 45 35 12 92
31 28 54 40 9 103
31 29 40 35 9 94
31 30 55 55 3 113

�� �

Figure 6.5: A fragment of the clock cycle count file produced by the profiling process

In figure 6.5 the first column represents the input values for the P operand, the

second column represents the input values for the a operand. The third, fourth and

fifth columns represent the clock cycle counts of the mont0, mont1, and gcd nodes

respectively and the final column is the total cycles measured for the current input

operands provided. Note each row represents the correlated latencies obtained for the

provided operand inputs P and a.

A plot of the cycle-count file obtained by the profiling process (see figure 6.4) is

shown in figure 6.6. It represents the resulting amount of clock cycles obtained by

uniformally distributing the combinations of input values P and a.

The figure basically shows that the latency increases from low, which is the minimum

latencies of the critical path of the application given in figure 6.1 to high, which is

the maximum latencies of the individual nodes on the critical path.
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Statistics

In this process we obtain statistics from the clock cycle count file of the application;

i.e. we obtain CLmax,WLmax(m) and WLavg(m). CLmax is the maximum number of

clock cycles taken for a single computation, WLmax(m) is the maximum workload in

a window of length m, WLavg(m) is the average workload in a window of length m.

WLmax(m) is used to calculate the required number of processing elements needed.

The parameters are calculated as follows:

WLmax(m) = max
j∈[0...SIZE−m]

(

j+m−1∑

i=j

CLi) (6.1.1)

CLmax = WLmax(1) = max
j∈[0...SIZE−1]

(CLi) (6.1.2)

WLavg(m) =

∑
j∈[0...SIZE−m]

∑j+m−1
i=j

CLi

m

SIZE − m
(6.1.3)

Note: SIZE is the total size of the input data stream.

Calculating the number of required processing elements

The number of processors is calculated as follows:

#procs = �
1
m

WLmax(m)

Throughput
� (6.1.4)

Which is basically the maximum workload within a window divided by the size of the

window divided by the input throughput. Note: this only gives a rough estimate for

the required number of processors given a maximum workload within the window.

Determining the number of processors required for the final implementation is a design

choice. This is described in the next section.
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Simulation

In this design step we simulate, tune the design parameters and obtain the system

latencies. The input file containing the clock cycle count is randomized by row to

obtain an input file for the simulator with an average work load (see figure 6.7).

A plot of this randomized input file is shown in figure 6.8. The simulation process

is a cycle count measurement based on the randomized input cycle-count file. To

check the simulation results a second simulation run can be done using a random

input generator which is configured to produce a work load up to WLmax(m). The

random input generator was designed to stress the application such that the workload

for every sliding window of length m is almost WLmax(m). This avoids cyclic input

values which may mislead the simulator latencies obtained.

This file is first fed into a statistics program which will calculate a number of required

parameters as mentioned in the previous section. The simulation parameters obtained

are:

Table 6.3: Statistical parameters obtained for simulation
parameter description

WLmax(m) The maximum work load within a window of size m
WLmax(m)/m The number of processors needed
CLmax This is equivalent to WLmax(1)/1
WLavg This is equivalent to WLmax of the total data set

The statistical program also provides the frequency distributions of the application

and all its functional nodes. Figure 6.9 shows a plot of the obtained frequency distri-

butions. Since the frequency distributions for the randomized inputs and the uniform

inputs are identical only one distribution is shown. In figure 6.9a the frequency dis-

tribution of the mont0 and in figure 6.9c the frequency distribution of the mont1

function are given. The distributions are not equivalent which is to be expected.

Table 6.4 shows the individual minimum, maximum, and average latencies in clock

cycles for the individual function nodes and the total application.
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Figure 6.7: mgcdm application design flow

153



 1
80

 2
00

 2
20

 2
40

 2
60

 2
80

 3
00

 3
20

 3
40

 0
 1

00
00

 2
00

00
 3

00
00

 4
00

00
 5

00
00

 6
00

00
 7

00
00

clock cycles 

ra
nd

om
iz

ed
 o

pe
ra

nd
 ’a

’ v
al

ue
s

In
pu

t d
at

a 
ra

nd
om

iz
ed

ra
nd

om
iz

ed
 in

pu
t d

at
a

Figure 6.8: mgcdm randrow stats

154



 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 0
 5

0
 1

00
 1

50
 2

00

frequency of occurence

C
lo

ck
 C

yc
le

s

m
on

t1
 fr

eq
ue

nc
y 

di
st

rib
ut

io
n 

(a
)

m
on

t1

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 0
 5

0
 1

00
 1

50
 2

00

frequency of occurence

C
lo

ck
 C

yc
le

s

m
on

t2
 fr

eq
ue

nc
y 

di
st

rib
ut

io
n 

(c
)

m
on

t2

 0

 2
00

00

 4
00

00

 6
00

00

 8
00

00

 1
00

00
0

 1
20

00
0

 1
40

00
0

 0
 5

0
 1

00
 1

50
 2

00

frequency of occurence

C
lo

ck
 C

yc
le

s

gc
d 

fr
eq

ue
nc

y 
di

st
rib

ut
io

n 
(b

)

gc
d

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 0
 1

00
 2

00
 3

00
 4

00
 5

00

frequency of occurence

C
lo

ck
 C

yc
le

s

to
ta

l d
is

tr
ib

ut
io

n 
(d

) to
ta

l

Figure 6.9: mgcdm randrow stats

155



Table 6.4: Min, Max, and Average latencies in clock cycles of the mgcdm application
name Minimum Maximum Average

mont0 16 173 73
mont1 16 161 57
gcd 3 60 15
mgcdm 37 325 158
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Note that the minimum latency of the total mgcdm application is not the sum of

the individual minimum latencies. This is due to the fact that the latencies of the

individual nodes are correlated.

Figure 6.10: GUI of the High2 DFM simulator

In order to obtain the required number of processing elements for each execution
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���������Mont
Gcd

16 17 22 30 60

131 813 818 826 827 824
132 416 418 410 405 409
134 341 341 333 332 330
150 325 326 325 325 325
322 325 325 325 325 325

Table 6.5: Number of Montgomery and Gcd processors versus the obtained simulator
latency in clock cycles

unit type we simulate with the number of processors given by WLmax(m)/m for each

processing element type using the High2 DFM simulator. A screen picture of the

GUI is shown in figure 6.10. Figure 6.11 gives a plot of various number of processor

combinations possible for different window size m values. The top curve in the plot is

for the montgomery node the curve below is for the gcd. We can see the montgomery

curve has the value of 320 clock cycles for m = 1 which is the correlated maximum

number of clock cycles obtained for the mont0 and mont1 nodes of the application

graph shown in figure 6.1. On the other hand the gcd function has a CLmax value

of 60cc. The reason that the CLmax value is different from those shown in chapter3

(gcd=69cc), is that the input data set has been influenced by the mont0 function and

hence the input operand combinations that lead to more than 60cc do not occur.

The actual latencies obtained from the simulator are shown in table 6.5. In the table

we show the number Gcd and Montgomery processors against the total latency ob-

tained by the simulator for a simulation run length of 220 randomized and correlated1

input data samples. From the table we can deduce that the number of required pro-

cessors which can handle the input work load must be above 147 (131 mont and 16

gcd) processors for an input data stream with a throughput of 1 sample per clock

cycle. If the number of processors is less than 147 the latency will go to infinity as

there is more incoming work load than that the system can handle. If we chose the

number of processing elements to be 382 (322 mont and 60 gcd) the system will have a

minimum latency but would be much more insensitive to input workload fluctuations.

1Correlated in the sense that the latencies are obtained from the actual application profiling and
not from individual node profiling
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poperty static scheduling dynamic scheduling

min latency 394 clock cycles 325
max latency 394 clock cycles 827

min nr. processors 334 mont and 60 gcd mont 131, gcd 16
max nr. processors 334 mont and 60 gcd mont 322, gcd 60

processor gain 0 % 58.4 % mont and 73.3 % gcd

Table 6.6: Dynamic versus static scheduling results of the mgcdm streaming applica-
tion with a stream throughput of one sample/clock cycle.

In fact it would be capable of handling the maximum possible workload. Reducing

the number of processors to 134 mont and 16 gcd processors gives a slightly higher

latency but with 1 − 134
322

∗ 100 = 58.4% reduction on the number of Montgomery

processors and 1 − 16
60

∗ 100 = 73.33% reduction on the number of Gcd processors.

This implies that if we use the dynamic scheduling approach of the High2 DFM and

compare it to the static scheduling approach we gain more than 60% on the number

of processors required. If latency is an important design parameter, we can obtain

better latency at the cost of more processors. Finally the design is tunable to the

input throughput. The figures obtained are for a throughput of one data sample per

clock cycle. If we lower the throughput to 1 data sample every 10 clock cycles we can

recalculate the number of required processors based on equation 6.1.4. Hence system

designers can scale design parameters to meet their application needs.
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Figure 6.11: mgcdm simulator latencies
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6.2 Conclusions

In this chapter we described the design of a high-throughput streaming application for

the High2 DFM architecture. By profiling the application we were able to determine

the number of processors required for the worst case latency and the best case latency

scenarios. If we consider the latency, then the gain we obtained is the difference

between the average execution latency of the total application and the maximum

execution latency of the individual nodes (which is the static scheduling case). It

turned out that a latency improvement of 394 − 325 = 69 clock cycles is possible for

the High2 DFM and a reduction of more than 60% of the number of processors.

Since the number of processors is scalable based on the input throughput, the system

can be tuned to the required input throughput. Variations in the input throughput do

influence the performance of the High2 DFM while the same variations for a statically

scheduled architecture may lead to non-optimal scheduling solutions (see chapter 1).
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Chapter 7

Conclusions and Future Work

7.1 Non-manifest algorithms

Non manifest algorithms are characterized by having a variable execution latency.

The variation in latency may be due to control sequences in the instruction code

which eventually will lead to various execution path’s or due to input data depen-

dency which may lead to a variation in the number of loop iterations or variation in

the control sequences taken. A combination of both is also plausible.

Modeling non-manifest behavior is best done by profiling the non-manifest applica-

tion on the target processor implementation. Taking the number of loop iterations as

a design parameter is not sufficient. It is not general enough to cover all application

examples. A better choice for profiling is to use the actual amount of clock cycles

consumed.

Important design parameters that are obtained by profiling are the maximum load

generated for a single computation CLmax and the average load CLavg. In order to ob-

tain accurate results the profiling should be performed using realistic application data.

Obtaining these parameters for complex type of applications (applications with more
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than one non-manifest algorithm) is not strait forward, since the frequency distribu-

tions of the individual nodes within the application are correlated.

7.2 Dynamic hardware scheduling architectures

Both Tomasulo and scoreboard schedulers are used in superscaler architectures which

are considered to be Von Neumann type architectures. Von Neumann type architec-

tures suffer from the so called Von Neumann bottleneck. Their architectures are

controlled by a sequencer which executes an instruction stream. Instructions are fine

grained and a program counter points to the next instruction to be executed.

The instruction life cycle consists of fetching instructions, executing them and writing

the results back to either registers or memory. This is very short when compared to

the instruction cycle of dataflow machines. In order to speedup Von Neumann type

of architectures the execution of instructions are pipelined.

Theoretically if there are no hazards the speedup up for a w deep pipelined architec-

ture is w. Unfortunately hazards do occur and they reduce the speedup. Some of

the pipeline hazards can be solved (statically) at compile time by aligning, reordering

and inserting dummy nop instructions.

Unfortunately this does not solve all control hazards.

The scoreboard and Tomasulo schedulers try to solve those hazards dynamically such

as mentioned in 4.3.2 and 4.3.3.

The differences between the scorebaording and Tomasulo is that scoreboarding will

allow instructions to run in parallel if there are no dependencies amongst them and

there are no structural hazards. Tomasulo on the other hand, tries to achieve more

ILP by distinguishing between true instruction dependencies and dependencies due

to compile time register allocation.

Out-of-order execution, out-of-order completion and register renaming are among the

modifications added to the Tomasulo scheduler in order to improve ILP. Even with

these sophisticated scheduling mechanisms, we have to look at other concepts such

as task level parallelism or coarse grained parallelism, if more parallelism is to be

obtained from an algorithmic specification. Since the instruction stream itself is the
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bottle neck.

The data flow model of execution does not suffer from false dependencies. Since there

are no registers. The operands of an instruction (node) travel through the edges of

the data flow graph from node to node. An instruction is considered executable when

the processing element implementing the instruction and operands of the instruction

are available. Hence the data flow model is hindered only by the true dependencies

available within the application. There is no restriction on the instruction granularity

within the data flow model although lessons learned from previous research suggest

that instructions with fine granularity lead to more overhead and an imbalance in the

computation to communication ratio.

Despite the problems classical data flow machines had to face, the dataflow model of

execution has attractive properties for high-throughput streaming applications and

hence is a motivation for the High2 dataflow architecture.

7.3 High2 Data Flow Machine

High throughput streaming applications come in two categories. The simple model

applications and the complex model applications.

Simple model applications consist of a single non-manifest algorithm. By having mul-

tiple processing elements (each implementing the same algorithm) running in parallel

on independent stream operands, an architectural solution that is capable of han-

dling various stream loads under various throughput conditions, is provided. Design

parameters for such an application are obtained by simulation. The latency which is

one of those parameters is also verified by an analytical upper bound.

Complex model applications are composed of multiple interacting algorithms which

operate on a high-throughput stream of operands.

A possible solution for the complex model applications is the High2 Data Flow Ma-

chine (DFM ). Which is a coarse grained data flow machine for high-throughput
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streaming non-manifest applications. It is derived from the classical data flow ar-

chitecture and its scheduling is done dynamically in hardware.

The High2 DFM was designed with streaming applications in mind, this means that

throughput is of major importance, the DFM can be tuned at design time to meet

certain throughput requirements, this is achieved by varying the number of processing

elements available for computing the (non-manifest) functions of the application.

7.4 Example of High2 DFM Applications

The design flow of the High2 DFM consists of profiling the application and determin-

ing the required design parameters. Since the number of processors is scalable based

on the input throughput, the system could be tuned to the required input through-

put. Variations in the input throughput do influence the performance of the High2

DFM while the same variations for a statically scheduled architecture may lead to

non-optimal scheduling solutions.

7.5 Conclusions

It is useful to implement high-throughput non-manifest applications on Coarse grained

data flow machines. If the application contains only manifest operations, dedicated

processor architectures which are based on static scheduling would have the advantage

of having less control overhead and hence a smaller design space. On the other hand

if the application contained non-manifest algorithms and the variation, in execution

time, between the average case and the worst case is meaningful. Architectures that

use dynamic scheduling of their processing elements can benefit from this variation.

7.6 Future work

The work presented in this thesis did not cover the problems of transporting operands

between execution units. Processing elements of a many execution units can produce

their outputs at the same time and hence the network should be able to handle that.
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Appendix A

Scoreboard rules

�
1 switch ( s t a t e ){
2 case ISSUE :
3 while (Busy [ in s t−>fu ] | | r e s u l t [ in s t−>de s t i n a t i on ] ){ /∗ wai t u n t i l ∗/ } ;
4 Busy [ in s t−>fu ] = true ;
5 Operation [ in s t−>fu ] = ins t−>operat ion ;
6 Fi [ in s t−>fu ] = ins t−>de s t i n a t i on ;
7 Fj [ in s t−>fu ] = ins t−>S1 ;
8 Fk [ in s t−>fu ] = ins t−>S2 ;
9 Qj [ in s t−>fu ] = Result [ in s t−>S1 ] ;

10 Qk[ ins t−>fu ] = Result [ in s t−>S2 ] ;
11 Rj [ in s t−>fu ] = (Qj [ in s t−>fu ] == ”” ) ? ”YES” | ”NO” ;
12 Rk [ ins t−>fu ] = (Qk[ ins t−>fu ] == ”” ) ? ”YES” | ”NO” ;
13 Result [ in s t−>de s t i n a t i on ] = ins t−>fu ;
14 break ;
15
16 case READ OPERANDS:
17 while ( ( Rj [ in s t−>fu ] == f a l s e ) | | (Rj [ in s t−>fu ] == f a l s e ) ){ /∗ wai t u n t i l ∗/ } ;
18 Rj [ in s t−>fu ] = ”NO” ;
19 Rk [ ins t−>fu ] = ”NO” ;
20 Qj [ in s t−>fu ] = 0 ;
21 Qk[ ins t−>fu ] = 0 ;
22 break ;
23
24 case EXECUTION COMPLETE:
25 while ( in s t−>fu . ready == f a l s e ){ /∗ wai t u n t i l ∗/ } ;
26 break ;
27
28 case WRITE RESULT:
29 r e s u l t = true ;
30 while ( r e s u l t ){
31 r e s u l t = true ;
32 for ( f =0; f<FU. s i z e ; f++){
33 i f ( ( Fj [ f ] != Fi [ in s t−>fu ] | | Rj [ f ] == ”NO” ) && (Fk [ f ] != Fi [ in s t−>fu ] | | Rk [ f ] == ”NO” ) ){
34 r e s u l t = f a l s e ;
35 }
36 }
37 }
38 for ( f =0; f<FU. s i z e ; f++){
39 i f (Qj [ f ] = ins t−>fu ) Rj [ f ] = ”YES” ;
40 i f (Qk[ f ] = ins t−>fu ) Rk [ f ] = ”YES” ;
41 }
42 Result [ Fi [ in s t−>fu ] ] = ”” ;
43 Busy [ in s t−>fu ] = ”NO” ;
44 break ;
45 }

�� �

Figure A.1: The scoreboard book keeping rules for each state of an instruction and
the actions taken to allow the instructions to advance from one state to the other
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Appendix B

Tomasulo rules

Figure B.1 provides the book keeping rules for the Tomasulo scheduling algorithm.

Note that instructions are always issued if there is a free reservation station (in the

case of floating point instructions), or there is an empty buffer location (in the case

of load/store) instructions. Results of an operation are written as soon as the CDB

is free. For the issuing instruction, rd is the destination, rs and rt are the source

register numbers. imm is the sign-extended immediate field, and r is the reservation

station or buffer that the instruction is assigned to. RS is the reservation stations

data structure. The value returned a FP unit or by the load unit is called a result.

RegisterStat is the register status data structure, the register file is REGS[].
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�
1 switch ( s t a t e ){
2 case ISSUE :
3 swith ( ope ra t i on type ){
4 case FP OPERATION:
5 while ( /∗ s t a t i o n r not empty ∗/ ){} ;
6 i f ( Reg i s t e rS ta t [ r s ] . Qi != 0){
7 RS[ r ] . Qj = Reg i s t e rS t a r t [ r s . Qi ] ;
8 } else{
9 RS[ r ] . Vj = regs [ r s ] ;

10 RS [ r ] . Qj = 0 ;
11 }
12 i f ( Reg i s t e rS ta t [ r t ] . Qi != 0){
13 RS[ r ] . Qk = Reg i s t e rS t a r t [ r t . Qi ] ;
14 } else{
15 RS[ r ] . Vk = regs [ r t ] ;
16 RS [ r ] . Qk = 0 ;
17 }
18 RS [ Busy ] = ”YES” ;
19 Reg i s t e rS ta t [ rd ] . Qi = r ;
20 break ;
21 case LOAD OR STORE:
22 while ( /∗ b u f f e r r not empty ∗/ ){} ;
23 break ;
24 case LOAD ONLY:
25 Reg i s t e rS ta t [ r t ] . Qi = r ;
26 break ;
27 case STORE ONLY:
28 i f ( Reg i s t e rS ta t [ r t ] . Qi != 0){
29 RS[ r ] . Qk = Reg i s t e rS ta t [ r s ] . Qi ;
30 } else{
31 RS[ r ] . Vk = Regs [ r t ] ;
32 RS [ r ] . Qk = 0 ;
33 }
34 break ;
35 }
36 break ;
37 case EXECUTE:
38 swith ( ope ra t i on type ){
39 case FP OPERATION:
40 while ( /∗ (RS [ r ] . Qj != 0) | | (RS [ r . ] Qk != 0) ∗/ ){} ;
41 { compute r e s u l t : operands are in Vj and Vk }
42 break ;
43 case LOAD OR STORE:
44 // s t e p 1
45 while ( /∗ (RS [ r ] . Qj != 0) | | ({ r i s not head o f l oad / s t o r e queue }) ∗/ ){} ;
46 RS [ r ] .A = RS[ r ] . Vj + RS[ r ] .A;
47 // s t r e p 2
48 {Read from Mem[RS [ r ] .A] } ;
49 break ;
50 }
51 break ;
52 case WRITE RESULT:
53 switch ( ope ra t i on type ){
54 case FP OPERATION:
55 case LOAD:
56 while ( /∗ ( e x e cu t i on not comp le t e a t r ) | | (CDB not a v a i l a b l e ) ∗/ ){} ;
57 for ( x in a l l register numbers ){
58 i f ( Reg i s t e rS ta t [ x ] . Qi ) = r ){
59 Regs [ x ] = r e s u l t ;
60 Reg i s t e rS ta t [ x ] . Qi = 0 ;
61 }
62 i f (RS [ x ] . Qj = r ){
63 RS[ x ] . Vj = r e s u l t ; RS [ x ] . Qj = 0 ;
64 }
65 i f (RS [ x ] . Qk = r ){
66 RS[ x ] . Vk = r e s u l t ; RS [ x ] . Qk = 0 ;
67 }
68 }
69 RS [ r ] . Busy = ”NO” ;
70 break ;
71 case STORE:
72 while ( /∗ ( e x e cu t i on not comp le t e a t r ) | | (Rs [ r ] . Qk == 0) ∗/ ){} ;
73 Mem[RS [ r ] .A] = r s [ r ] . Vk ;
74 RS [ r ] . Busy = ”NO” ;
75 break ;
76 }
77 break ;
78 }

�� �

Figure B.1: The Tomasulo scheduling rules
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Appendix C

VHDL code of the simple model

architecture

C.0.1 Implementation of the processing element

In this appendix we describe how to implement the processing element as a Mealy

model. The specification of the processing element is as follows: The processing

element will behave as a non-manifest loop and at the same time, the number of

loop computations must be controlled by the input data. Hence, if the scheduler

provides the data value v where v ∈ [1 . . .CLmax] the processing element will consume

the amount v iterations (clock cycles) during its computation. The result of the

computation is always the same value v provided as its input.

This allows us to test the scheduler under various load conditions by providing an

input stream with known computation load. Table C.1 shows the specification of the

required processing element.

In figure C.1 the unfolded version and in figure C.2 the folded version of a generic

processing element are shown. The design process starts by unfolding the specification

in time, and in order to design the processing element as a Mealy model, the path

from input to output, for a single iteration computation, must be within the same

time unit. In other words providing an input to the processing element at time ti

where the processing element would provide its output at time ti+1 is not allowed.
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Table C.1: Specification of the processing element
control action

datai = dataIn
wr & - counti = dataIn

active = dataIn > 1
dataOut = dataIn
datai = datai−1

wr&active counti = counti−1 − 1
active = counti−1 > 1
dataOut = datai−1

datai = datai−1

wr&active counti = counti−1

dataOut = datai−1

The second step is to fold the processing element in time. Registers will be added

to data signals which cross the time line. Finally we give names to all the internal

signals and write the VHDL description of the processing element based on the folded

version of the processing element shown in figure C.2.

In the VHDL implementation of the processing element we use the data type DataTp

this is declared in the package type shown in figure C.4. The package mainly contains

the needed data structures and some functions used by the scheduler.

C.0.2 Implementation of the scheduler

The scheduler’s VHDL code is shown in figure C.5. It consists of a memory array

which is used to store the data, an allocation table, for keeping track the computations

resultant memory address.

The scheduler basically performs the following tasks in a repetitive manner.

• write the result data on to the output stream

• store the valid data from the processing elements to their appropriate memory

locations

• allocate waiting data to free processing elements
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Figure C.1: Generic processing element unfolded in time

The scheduler configuration is given in figure C.6. It basically describes how the

connections between the scheduler and the processing elements are established.

C.0.3 Experimental results

The system described was simulated using the simulation tool ModelSim from Model

technology [43] and synthesized for a 0.5µ technology using the LeonardoSpectrum

synthesis engine from Exemplar Logic.
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Figure C.2: Folded version of the generic processing element

�
1 ENTITY r e s IS
2 PORT( c l k : in s t d l o g i c ;
3 r e s e t : in s t d l o g i c ;
4 wr : in s t d l o g i c ;
5 a c t i v e : out boolean ;
6 DataIn : in DataTp ;
7 DataOut : out DataTp ) ;
8 END r e s ;
9

10
11 architecture behavior of r e s i s
12 signal d reg : DataTp ;
13 signal c r e g : DataTp ;
14 signal x i : DataTp ;
15 signal y i : DataTp ;
16 signal a c t i v e i : boolean ;
17 signal i x i : DataTp ;
18 begin
19 process ( c lk , r e s e t )
20 begin
21 i f r i s i n g e d g e ( c l k ) then
22 c r e g <= i x i ;
23 d reg <= yi ;
24 end i f ;
25 end process ;
26 x i <= dataIn when wr= ’1 ’ else c r e g ;
27 y i <= dataIn when wr= ’1 ’ else d reg ;
28 a c t i v e i <= ( x i > 1 ) ;
29 dataOut <= yi ;
30 i x i <= xi − 1 when a c t i v e i = true else x i ;
31 a c t i v e <= a c t i v e i ;
32 end behavior ;

�� �

Figure C.3: VHDL code of a generic processing element

The results of the synthesis process for multiple processing elements are shown in

table C.2.
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�
1 PACKAGE types IS
2 CONSTANT Nres : p o s i t i v e := 3 ; −− number o f r e s ou r c e s
3 CONSTANT M : po s i t i v e := 14 ; −− Latency
4
5 −−− Data dependent p r o p e r t i e s
6 CONSTANT maxint : i n t e g e r := 2∗∗4−1;
7 SUBTYPE int0tomax IS i n t e g e r RANGE 0 TO maxint ;
8 TYPE DataTpIn IS ARRAY(0 TO 1) OF int0tomax ;
9 SUBTYPE DataTpOut IS int0tomax ;

10
11 −− Memory f o r s t o r i n g data
12 TYPE Storage IS RECORD
13 inp : DataTpIn ;
14 outp : DataTpOut ;
15 END RECORD;
16 TYPE MemoryTp IS ARRAY(0 TO M−1) OF Storage ;
17
18 −− Type used f o r data t r a n s p o r t be tween r e s ou r c e s and s c h e d u l e r
19 TYPE DataVecTpIn IS ARRAY (0 TO Nres−1) OF DataTpIn ;
20 TYPE DataVecTpOut IS ARRAY (0 TO Nres−1) OF DataTpOut ;
21 TYPE IndexVecTp IS ARRAY (0 TO Nres−1)
22 OF i n t e g e r RANGE 0 TO M;
23 TYPE DataSchedResTpIn IS RECORD
24 Data : DataTpIn ;
25 wr : s t d l o g i c ;
26 END RECORD;
27 TYPE DataSchedResVecTpIn IS ARRAY(0 TO Nres−1)
28 OF DataSchedResTpIn ;
29
30 TYPE DataSchedResTpOut IS RECORD
31 Data : DataTpOut ;
32 a c t i v e : boolean ;
33 END RECORD;
34
35 TYPE DataSchedResVecTpOut IS ARRAY(0 TO Nres−1)
36 OF DataSchedResTpOut ;
37
38 −− s y n t h e s i s a b l e f u n c t i o n s .
39 FUNCTION incr mod ( i ,max : IN i n t e g e r ) RETURN i n t e g e r ;
40 FUNCTION my mod(a , b : IN i n t e g e r ) RETURN i n t e g e r ;
41 END types ;
42
43 PACKAGE BODY types IS
44 FUNCTION incr mod ( i ,max : IN i n t e g e r ) RETURN i n t e g e r IS
45 VARIABLE r e s : i n t e g e r ;
46 BEGIN
47 IF i < max−1 THEN
48 r e s := i +1;
49 ELSE
50 r e s :=0;
51 END IF ;
52 RETURN r e s ;
53 END incr mod ;
54
55 FUNCTION my mod(a , b : IN i n t e g e r ) RETURN i n t e g e r IS
56 BEGIN
57 IF a−b < 0 THEN
58 RETURN a ;
59 ELSE
60 RETURN ( a − ( ( a/b) ∗ b ) ) ; −− b i s a poower o f 2
61 END my mod ;
62 END types ;

�� �

Figure C.4: The data and bus types

The synthesis results show that the simple model architecture is indeed realizable

for Asic design (depending on the required number of processing elements). The im-

plementation scales with the number of processing elements as was expected. Hence

there is a physical upper bound on the allowable number of processing elements. Also

the obtained frequency of the implementation scales with the number of processing
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1 ENTITY s chedu l e r IS
2 PORT ( c l k : IN s t d l o g i c ;
3 r e s e t : IN s t d l o g i c ;
4 data : IN DataTpIn ;
5 Sched2Res : OUT DataSchedResVecTpIn ;
6 Res2Sched : IN DataSchedResVecTpOut ;
7 r e s u l t : OUT DataTpOut
8 ) ;
9 END s chedu l e r ;

10
11 ARCHITECTURE behaviour OF s chedu l e r IS
12 SIGNAL Sched2Res int : DataSchedResVecTpIn ;
13 SIGNAL f r e e , s t o r e : s t d l o g i c v e c t o r (0 TO Nres −1);
14 BEGIN
15 PROCESS( Res2Sched , Sched2Res int , f r e e )
16 BEGIN
17 s t o r e <= (OTHERS= > ’0 ’);
18 FOR i IN Res2Sched ’RANGE LOOP
19 IF NOT Res2Sched ( i ) . a c t i v e THEN
20 s t o r e ( i )<=Sched2Res int ( i ) . wr OR NOT f r e e ( i ) ;
21 END IF ;
22 END LOOP;
23 END PROCESS;
24
25 PROCESS( c lk , r e s e t )
26 VARIABLE f i r s t , l a s t : i n t e g e r RANGE 0 TO M−1;
27 VARIABLE memory : MemoryTp ;
28 VARIABLE l a s t hand l ed : boolean ;
29 TYPE LutTp IS ARRAY (0 TO Nres−1) OF i n t e g e r RANGE 0 TO M−1;
30 −− s t o r e s t h e index in memory o f t h e r e s u l t .
31 VARIABLE Lut : LutTp ;
32 BEGIN
33 IF r e s e t = ’1 ’ THEN
34 l a s t :=0; f i r s t :=0;
35 Sched2Res int <= (OTHERS => ( ( 0 , 0 ) , ’ 0 ’ ) ) ;
36 f r e e <= (OTHERS => ’ 1 ’ ) ;
37 l a s t hand l ed := f a l s e ;
38 l u t := (OTHERS => 0 ) ;
39 ELSIF r i s i n g e d g e ( c l k ) THEN
40 r e s u l t <= memory( f i r s t ) . d1 ;
41 −− s t o r e v a l i d data from r e s ou r c e s to memory
42 FOR i IN 0 TO Nres−1 LOOP
43 IF s t o r e ( i )= ’1 ’ THEN
44 −− memory . d1 i s used f o r bo th inpu t and ou tpu t data
45 memory( Lut ( i ) ) . d1:=Res2Sched ( i ) . Data ;
46 f r e e ( i ) <= ’1 ’;
47 END IF ;
48 END LOOP;
49 −− a s s i g n data to r e s ou r c e s
50 Sched2Res int <= (OTHERS => ( ( 0 , 0 ) , ’ 0 ’ ) ) ;
51 memory( f i r s t ):= data ;
52 l a s t hand l ed := f a l s e ;
53 FOR i IN f r e e ’RANGE LOOP
54 IF ( f r e e ( i )= ’1 ’ OR s t o r e ( i )= ’1 ’) AND NOT l a s t hand l ed THEN
55 −− I f r e s ou r c e i s f r e e ( ’ 0 ’ ) then i t can be used aga in .
56 −− But i f s t o r e i s ’1 ’ then th e r e s ou r c e has j u s t
57 −− f i n i s h e d a j o b and can a l l o c a t e d to a new one .
58 Sched2Res int ( i ) <= (memory( l a s t ) , ’ 1 ’ ) ;
59 Lut ( i ) := l a s t ;
60 f r e e ( i ) <= ’0 ’;
61 l a s t hand l ed := l a s t=f i r s t ;
62 l a s t := incr mod ( l a s t , M) ;
63 END IF ;
64 END LOOP;
65 f i r s t := incr mod ( f i r s t , M) ;
66 END IF ;
67 END PROCESS;
68 Sched2Res <= Sched2Res int ;
69 END behaviour ;

�� �

Figure C.5: A processing element independent scheduler implementation

elements. The reason that the frequency decreases with the number of processing

elements is that the scheduling algorithm loops over all processing elements checking
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1 ENTITY system IS
2 PORT ( c l k : IN s t d l o g i c ;
3 r e s e t : IN s t d l o g i c ;
4 data : IN DataTpIn ;
5 r e s u l t : OUT DataTpOut ) ;
6 END system ;
7
8 ARCHITECTURE s t r u c tu r e OF system IS
9 component s chedu l e r IS

10 PORT ( c l k : IN s t d l o g i c ;
11 r e s e t : IN s t d l o g i c ;
12 data : IN DataTpIn ;
13 Sched2Res : OUT DataSchedResVecTpIn ;
14 Res2Sched : IN DataSchedResVecTpOut ;
15 r e s u l t : OUT DataTpOut
16 ) ;
17 END component ;
18 component r e sou r c e i s
19 port ( DataIn : DataSchedResTpIn ;
20 DataOut : out DataSchedResTpOut ;
21 c lk : s t d l o g i c ;
22 r e s e t : s t d l o g i c ) ;
23 end component ;
24 SIGNAL Sched2Res : DataSchedResVecTpIn ;
25 SIGNAL Res2Sched : DataSchedResVecTpOut ;
26 BEGIN
27 sched : s chedu l e r
28 PORT MAP ( c lk , r e s e t , data , Sched2Res , Res2Sched , r e s u l t ) ;
29 r e s ou r c e s :FOR i IN Sched2Res ’RANGE GENERATE
30 i n s t : r e sou r c e
31 PORT MAP ( Sched2Res ( i ) , Res2Sched ( i ) , c lk , r e s e t ) ;
32 END GENERATE;
33 END s t r u c tu r e ;

�� �

Figure C.6: The scheduler configuration

Table C.2: Synthesis results

#PE ′s Frequency (Mhz) #Gates Asic technology
1 185.5 3132 0.5 µ
2 166 4447 0.5 µ
4 85.2 7179 0.5 µ
8 52.8 13793 0.5 µ
16 27.2 26088 0.5 µ
32 13.7 54791 0.5 µ
64 6.9 111870 0.5 µ

if they have to write their results to memory. This loop is a sequential implementa-

tion and results in a large combinatorial path within the hardware implementation

and hence a longer clock period. Better results can be obtained (at the cost of ex-

tra busses and multi ported memory) if we parallelize the implementation of this loop.

Having multiple processing elements does indeed allow the system to achieve a higher

stream throughput, but it introduces an extra implementation problem, which is that
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1 entity r e sou r c e i s
2 port ( DataIn : DataSchedResTpIn ;
3 DataOut : out DataSchedResTpOut ;
4 c l k : s t d l o g i c ;
5 r e s e t : s t d l o g i c ) ;
6 end r e sou r c e ;
7
8 architecture t e s t of r e sou r c e i s
9 a l ias x : i n t e g e r i s DataIn . Data . d1 ;

10 a l ias y : i n t e g e r i s DataIn . Data . d2 ;
11 a l ias wr : s t d l o g i c i s DataIn . wr ;
12 a l ias z : i n t e g e r i s DataOut . data ;
13 a l ias a c t i v e : boolean i s DataOut . a c t i v e ;
14 signal a c t i v e i : boolean ;
15 signal xreg , yreg , ixreg , iyreg , z i , xi , y i : int0tomax ;
16 function module (x , y : i n t e g e r ) return i n t e g e r i s
17 begin
18 i f y=0 then
19 report ” r i gh t operand 0” severity note ;
20 return x ;
21 else
22 return x mod y ; −− f o r s imu l a t i o n
23 −− r e t u rn my mod( x , y ) ; −− f o r s y n t h e s i s
24 end i f ;
25 end module ;
26 begin
27 process ( c lk , r e s e t )
28 begin
29 i f r i s i n g e d g e ( c l k ) then
30 i f a c t i v e i then
31 xreg <= ix r eg ;
32 yreg <= iy r eg ;
33 end i f ;
34 end i f ;
35 end process ;
36 x i <= x when wr= ’1 ’ else xreg ;
37 y i <= y when wr= ’1 ’ else yreg ;
38 z i <= module ( yi , x i ) ;
39 i x r e g <= z i ;
40 i y r e g <= xi ;
41 a c t i v e i <= not ( z i =0);
42 a c t i v e <= a c t i v e i ;
43 z <= xi ;
44 end t e s t ;

�� �

Figure C.7: The gcd(x,y )processing element implementation

of having to simultaneously write the results of multiple processing elements to mem-

ory.

The simulation results in figure C.8 show the waveform produced of the scheduler in-

combination with three generic processing elements. From the simulation set we can

see that the active signal of a processing element directly follows the wr signal (This

can be seen at clock value 150ns) and that consecutive writes to the same processing

element are handled by the system without any extra delays. Which indicates that

we do not lose extra clock cycles for writing the data to and form the processing

element.
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